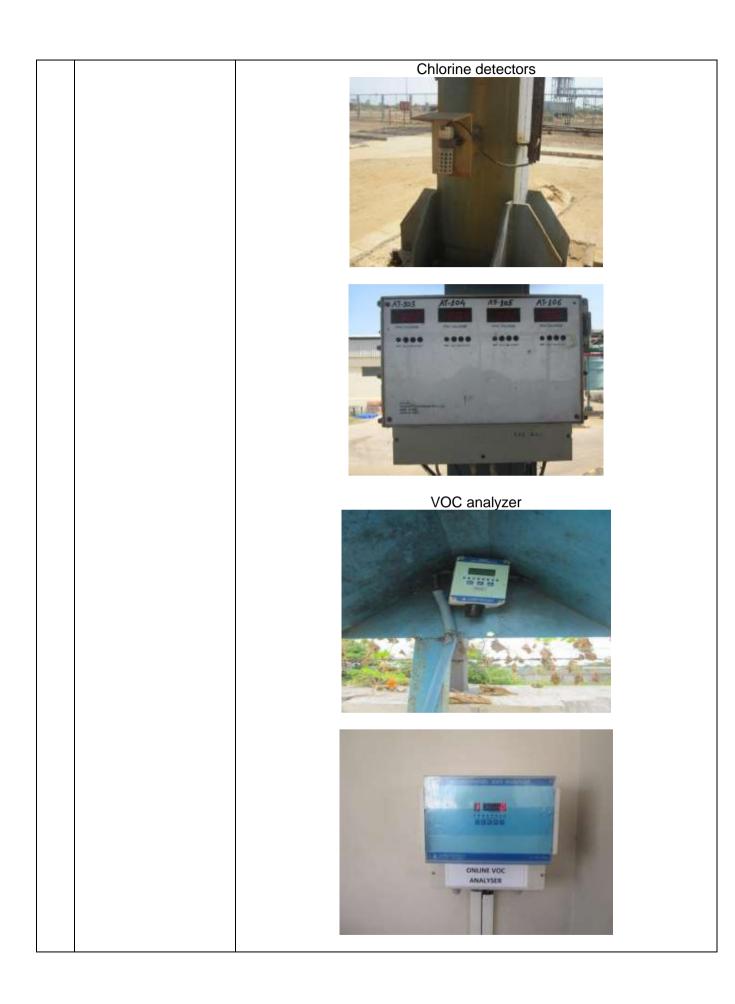
Jubilant Infrastructure Ltd. - SEZ, Vilayat (Gujarat)

Six Monthly Compliance report from July 2018 to December 2018

For the Environmental Clearance vide letter no. 21-1087/2007-I A III dtd. 03.07.2008


As on 29.01.2019

Sr.	Stipulation requirement	Com	plianc	e statu	IS				
No.	Specific Conditions								
1	Solvent recovery plant shall be installed to recover the solvents & recovery shall not be	Complied as detailed below. Solvent recovery system is instruction recover the solvents wherein							
	less than 95 percent. All the solvents shall be handled in closed	recycled back to process.							
	conditions and chillers shall be provided for chilled brine	All the solvents are handled in closed conditions (in-process). For storage tank vents, vent chillers are provided to condense the solvent vapors generated.							
	circulation to condense the solvents generated from the	In reaction vessels, chilled brine circulation is provided to condense the solvents generated during the reaction and could escape from the vents. Work zone environment is monitored monthly at various locations in the							
	vents and in the work zone environment shall be monitored periodically & reports submitted to the	plant operational areas & reports are submitted to the GPCB, CF Vadodara and Ministry's Regional Office, Bhopal along with six more							
	SPCB, CPCB and Ministry's Regional	VOC monitoring in wor	k envir	onmen	t				
	Office.	Location	Min.	Max.	Average				
		Niacinamide Ground floor	BDL	BDL	BDL				
		3CP Ground floor	BDL	BDL	BDL				
		Near 3CP Hot Oil Tank	BDL	BDL	BDL				
		3CP Tank Farm	BDL	BDL	BDL				
		FC Ground floor	BDL	BDL	BDL				
		FC Second floor	BDL	BDL	BDL				
		Petroleum Storage Tanks	BDL	BDL	BDL				
		Unit-2 PB1	BDL	BDL	BDL				
		Unit-2 PB2	BDL	BDL	BDL				
		Unit-2 Scrubber1	BDL	BDL	BDL				
		Unit-2 Scrubber2	BDL	BDL	BDL				
		Unit-2 Intermediate Tank farm	BDL	BDL	BDL				
		Unit-2 Raw material Tank farm	BDL	BDL	BDL				
		Incinerator	BDL	BDL	BDL				
		BDL: Below Detectable Limit. Set	nsitivity	of the	•				
		monitoring instrument is 1 ppm							

		Ve	ent chillers		
2	Volatile Organic Compounds (VOCs) shall be assessed, controlled and monitored in solvent storage areas and reports submitted to the SPCB/ CPCB and Regional Office of the	Complied as detailed below. Volatile Organic Compounds (V system connected to vent chille recovered. The VOC in ambien the same and the VOC levels a of the vent chilling system. The GPCB/ CPCB and Regional Off	rs where they t air is regularly re controlled b monitored rep rice of the Mini	are conder y assessed y ensuring orts are su stry, Bhopa	nsed and d by monitoring good operation Ibmitted to the al.
	Ministry.	The summary of results for las	st six months is I g in work envir		
		Location	Min.	Max.	Average
		3CP Tank Farm	BDL	BDL	BDL
		Petroleum Storage Tanks	BDL	BDL	BDL
		Unit-2 Intermediate Tank farm	BDL	BDL	BDL
		Unit-2 Raw material Tank farm	BDL	BDL	BDL
		BDL: Below Detectable Limit Sen	sitivity of the m	onitoring in	strument is 1
		ppm			
3	The scrubbers shall be provided to control fugitive emissions in the workplace environment, product and raw material	Complied as detailed below. The scrubbers are provided to c environment, product and raw r Online ammonia, VOC and chl	naterial storag orine detector	e areas. s are insta	illed at strategic
	and raw material	Online ammonia, VOC and chl locations for continuous monito			

	environment monitoring.							
	The summary of results for last six r	nonths is as	below:					
	Chlorine concentration (ppm)	Min.	Max.	Average				
	Chlorine tonner near Cooling tower	BDL	BDL	BDL				
	Unit-2 PB1	BDL	BDL	BDL				
	Unit-2 PB2	BDL	BDL	BDL				
	Unit-2 Scrubber-1	BDL	BDL	BDL				
	Unit-2 Scrubber-2	BDL	BDL	BDL				
	Unit-2 Intermediate Tank Farm area	BDL	BDL	BDL				
	Unit-2 RM Tank Farm area	BDL	BDL	BDL				
	Unit-2 Chlorine Shed	BDL	BDL	BDL				
	UOM is PPM, Detection limit is	up to 0.1 Pl	PM, TLV is	0.5 ppm				
	Ammonia Concentration (ppm)	Min.	Max.	Average				
	Ammonia Tank Farm	BDL	BDL	BDL				
	Fine Chemical Plant Pipe Rack	BDL	BDL	BDL				
	Utility area	BDL	BDL	BDL				
	3CP ground floor	BDL	BDL	BDL				
	UOM is PPM, Detection limit is up to 0.1 PPM, TLV is 25 ppm							
	VOC monitoring in work environment							
	Location	Min.	Max.	Average				
	Niacinamide Ground floor	BDL	BDL	BDL				
	3CP Ground floor	BDL	BDL	BDL				
	Near 3CP Hot Oil Tank	BDL	BDL	BDL				
	3CP Tank Farm	BDL	BDL	BDL				
	FC Ground floor	BDL	BDL	BDL				
	FC Second floor	BDL	BDL	BDL				
	Petroleum Storage Tanks	BDL	BDL	BDL				
	Unit-2 PB1	BDL	BDL	BDL				
	Unit-2 PB2	BDL	BDL	BDL				
	Unit-2 Scrubber1	BDL	BDL	BDL				
	Unit-2 Scrubber2	BDL	BDL	BDL				
	Unit-2 Intermediate Tank farm	BDL	BDL	BDL				
	Unit-2 Raw material Tank farm	BDL	BDL	BDL				
	Incinerator	BDL	BDL	BDL				
	BDL: Below Detectable Limit							

			6		
4	Arrangements shall be made to control and monitor the odorous chemicals.	 Complied as detailed below; Odorous chemicals are containers and tankers ar through closed pipeline diareactors. Pumps are provided with during operation. The storage areas for odo adequately ventilated. The odorous chemicals hawith tank vents and chilling The reactor tanks where provided with Chiller condes scrubbers to ensure conde Further, few of the odorous cannot be condensed an through pipeline for destruct Fugitive emissions are regularly environment monitoring. 	nd preferably rectly to the mechanical s prous chemica andled in sto unit for vent the odorous ensers and the ensing any fug s streams of g id recovered ction in a gas monitored u	transferre consumpti- seal to pre- als handle prage tanks gases. chemicals e vents ar gitive emis- gaseous er are direc- eous incin	ed by pumping on point in the vent any leaks d in drums are s are provided s are used are e connected to sions. missions which ctly transferred erator.
		Chlorine Concentration	Min.	Max.	Average
		(ppm) Chlorine tonner near Cooling	BDL	BDL	BDL
		tower			
		Unit-2 PB1	BDL	BDL	BDL
		Unit-2 PB2	BDL	BDL	BDL
		Unit-2 Scrubber-1	BDL	BDL	BDL
		Unit-2 Scrubber-2	BDL	BDL	BDL
		Unit-2 Intermediate Tank Farm area	BDL	BDL	BDL
		Unit-2 RM Tank Farm area	BDL	BDL	BDL
		Unit-2 Chlorine Shed	BDL	BDL	BDL
		UOM is PPM, Detecti TLV is	ion limit is up s 0.5 ppm	to 0.1 PPI	VI,
			••		

Ammonia Concentration (ppm)	Min.	Max.	Average		
Ammonia Tank Farm	BDL	BDL	BDL		
Fine Chemical Plant Pipe Rack	BDL	BDL	BDL		
Utility area	BDL	BDL	BDL		
3CP ground floor	BDL	BDL	BDL		
TLV is	UOM is PPM, Detection limit is up to 0.1 PPM, TLV is 25 ppm				
VOC monitoring i		onment			
Location	Min.	Max.	Average		
Niacinamide Ground floor	BDL	BDL	BDL		
3CP Ground floor	BDL	BDL	BDL		
Near 3CP Hot Oil Tank	BDL	BDL	BDL		
3CP Tank Farm	BDL	BDL	BDL		
FC Ground floor	BDL	BDL	BDL		
FC Second floor	BDL	BDL	BDL		
Petroleum Storage Tanks	BDL	BDL	BDL		
Unit-2 PB1	BDL	BDL	BDL		
Unit-2 PB2	BDL	BDL	BDL		
Unit-2 Scrubber1	BDL	BDL	BDL		
Unit-2 Scrubber2	BDL	BDL	BDL		
Unit-2 Intermediate Tank farm	BDL	BDL	BDL		
Unit-2 Raw material Tank farm	BDL	BDL	BDL		
Incinerator	BDL	BDL	BDL		
BDL: Below Detectable Limit Sensitivity of the monitoring instrum	ient is 1 ppm				
Inci	nerator				
1 1					

						Vont	chillers							
5	The gaseous emissions (SO2, NOx CO, VOC and HC) and Particulate matte along with RSPM levels from various process units shall conform to the standards prescribed	r, ma par The Co	tter al ty and	long with d are cor Imary of	RSPM a		rly monite andards	ored thro prescribe	ugh appro d.	articulate oved 3 rd				
		DI	/l mg/	Nm3		NOx ppm		9	02 mg/Nn					
	Stack	Min.	_	Average		nov bbii			02 mg/m	n3				
	Stack -				Min.	Max.	Average	Min.	Max.					
	Incinerator	12	22	16.8	Min. 9.1 mg/Nm 3	Max. 14.5 mg/Nm 3	Average 11.22 mg/Nm 3	Min. 1.0 mg/Nm 3	Max. 1.8 mg/Nm 3	n3 Average 1.34 mg/Nm 3				
	Incinerator Steam Boiler (28 TPH / 35TPH)	12 10	22 16		9.1 mg/Nm	14.5 mg/Nm	11.22 mg/Nm	1.0 mg/Nm	1.8 mg/Nm	Average 1.34 mg/Nm				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1	10 Not	16 in ope	16.8 13.5 eration	9.1 mg/Nm 3 20.4 Not	14.5 mg/Nm 3 25.5 in operat	11.22 mg/Nm 3 22.47 tion	1.0 mg/Nm 3 10.2 Not	1.8 mg/Nm 3 18.3 in operat	Average 1.34 mg/Nm 3 14.83 tion				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2	10 Noti	16 in ope in ope	16.8 13.5 eration eration	9.1 mg/Nm 3 20.4 Not	14.5 mg/Nm 3 25.5 in operat	11.22 mg/Nm 3 22.47 tion	1.0 mg/Nm 3 10.2 Not	1.8 mg/Nm 3 18.3 in operat	Average 1.34 mg/Nm 3 14.83 tion tion				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3	10 Not Not	16 in ope in ope	16.8 13.5 eration eration	9.1 mg/Nm 3 20.4 Not Not	14.5 mg/Nm 3 25.5 in operat	11.22 mg/Nm 3 22.47 tion tion	1.0 mg/Nm 3 10.2 Not Not	1.8 mg/Nm 3 18.3 in operat	Average 1.34 mg/Nm 3 14.83 tion tion				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1)	10 Noti	16 in ope in ope	16.8 13.5 eration eration	9.1 mg/Nm 3 20.4 Not Not	14.5 mg/Nm 3 25.5 in operat	11.22 mg/Nm 3 22.47 tion tion	1.0 mg/Nm 3 10.2 Not Not	1.8 mg/Nm 3 18.3 in operat	Average 1.34 mg/Nm 3 14.83 tion tion				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit- 1)	10 Not Not 10 Not	16 in ope in ope	16.8 13.5 eration eration 12	9.1 mg/Nm 3 20.4 Not Not Not	14.5 mg/Nm 3 25.5 in operat	11.22 mg/Nm 3 22.47 tion tion tion	1.0 mg/Nm 3 10.2 Not Not Not	1.8 mg/Nm 3 18.3 in operat	Average 1.34 mg/Nm 3 14.83 tion tion ble				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit- 1) Unit-1 Hot Oil unit	10 Not Not 10 Not	16 in ope in ope 15 Appli	16.8 13.5 eration eration 12 icable	9.1 mg/Nm 3 20.4 Not Not No No	14.5 mg/Nm 3 25.5 in operat in operat t Applical t Applical	11.22 mg/Nm 3 22.47 tion tion tion ole	1.0 mg/Nm 3 10.2 Not Not No No	1.8 mg/Nm 3 18.3 in operat in operat t Applicat of Applicat	Average 1.34 mg/Nm 3 14.83 tion tion ble ble 0				
	Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit- 1)	10 Not i Not i 10 Not	16 in ope in ope 15 Appli	16.8 13.5 eration eration 12 icable 0 0	9.1 mg/Nm 3 20.4 Not Not No No 8 10.5	14.5 mg/Nm 3 25.5 in operat in operat t Applical	11.22 mg/Nm 3 22.47 tion tion tion ole ble 11 11.55	1.0 mg/Nm 3 10.2 Not Not Not Not O 0	1.8 mg/Nm 3 18.3 in operat in operat t Applical	Average 1.34 mg/Nm 3 14.83 tion tion ble ble 0 0				

64	ack	Н	C mg/	/Nm3	Н	CL mg/	'Nm3	CL	2 m	g/Nm3	N	-13 mg	/Nm3
56	ack	Min.	Max.	Average	Min.	Max.	Average	Min. N	lax.	Average	Min.	Max.	Average
Incin	erator	2	3	2.6	Nc	ot Dete	ctable	Not Applicable		No	Not Applicable		
	ler (28 TPH TPH)	No	t App	licable	ble Not Applicable No		Not	Not Applicable		No	Not Applicable		
Gas Turbine -1		No	Iot Applicable Not Applicable Not Applicable				plicable	Not Applicable					
Gas Tu	rbine -2	No	t App	licable	No	ot Appli	icable	Not	Ар	plicable	No	t Appl	icable
Gas Tu	rbine -3	No	t App	licable	No	ot Appli	icable	Not	Ар	plicable	No	t Appl	icable
Niacinami	de (Unit-1)	No	t App	licable	No	ot Appli	icable	Not	Ap	plicable	No	t Appl	icable
Ammonia Scrubber for Autoclave Reactor System (Unit- 1)		No	t App	licable	No	ot Appli	icable	Not	Not Applicable			2.5	1.96
Unit-1 Ho	ot Oil unit	No	t App	licable	No	ot Appli	icable	Not	Ар	plicable	No	Not Applicable	
Unit-2 Ho	ot Oil unit	No	t App	licable	No	ot Appli	icable	Not Applicable			Not Applicable		
Scrubber-	1 of Unit-2	No	t App	licable		t in ope time of	eration sampling			peration of sampling	Not Applicable		
Scrubber-	2 of Unit-2	No	t App	licable	0.8 1.4 1.116 0.2 0.8 0.4			0.466	Not Applicable				
Sr. No.	Stack atta	ached	to		Parameter Permissible Lin				imit	imit			
1	Boilers, G	as Tur	bines		Particulate SO2 NOx			100 mg/NM3 100 ppm 50 ppm					
2	Hot oil un	its,		Particulate matter SO2 NOx Particulate matter SO2 NOx HCl			SO2			100 mg/NM3 100 ppm 50 ppm 50 mg/NM3 200 mg/NM3 400 mg/NM3 20 mg/NM3 15 mg/NM3			
3	Incinerato	or											
4	Emergenc Set				Pa SO	HC Particulate matter SO2 NOx				150 mg/NM3 150 ppm 50 ppm			
5	Niacinami			yer Vent			e matter			150 mg/NM3			
All the	Ammonia	Scrub		mplied a		mmonia				175 mg/NM3			
solid/hazardous wasteincluding ETP sludgeshall be sent toTreatment, Storageand Disposal Facility(TSDF).The toxic/ hazardousT			All Tre Infr at I	the solid atment, astructu Kutch.	d/hazaı Storaç ıre Ltd. iquid w	rdous ge and at Da vastes	waste inc d Disposa ahej & M/s	l Facility s Sauras erated ir	/ (T shti n th	P sludge ar SDF) of M ra Enviro F e common	l/s Bh Projec Haza	naruc cts P\ ardou	vt. Ltd. is Was

incinerator.

Incinerator installed and operated by the SEZ operator Jubilant Infrastructure Limited, within the SEZ complex at Vilayat GIDC. All incinerable toxic solid Hazardous wastes are sent to GPCB authorized common incinerator facility at M/s Bharuch Enviro Infrastructure Ltd. at Ankleshwar, M/s Saurashtra Enviro projects Pvt. Ltd. at Kutch. & M/s Geohybrid Solution Pvt. Ltd. at Surat.

		Incinerator
		Incinerator Image: state states
		BHARUCH ENVIRO INFRASTRUCTURE LIMITED
		To, Jubilant Infrastructure Ltd. (Sez) Plot No.5, Vilayat GIDC, Tal: Vagra, Dist: Bharuch.
		Sub : Membership Certificate for Common Solid Waste Disposal Facility.
		Dear Sir, We hereby certify that you have become member for the common Solid/Hazardous waste disposal facility of Bharuch Enviro Infrastructure Ltd., at GIDC, Ankleshwar. You have booked solid waste quantity of <u>40 MT/year</u> . You have also paid your capacity commitment charges. Your Membership No. is Oth/331 .
		Waste will be accepted after submitting valid authorization of GPCB. Thanking you,
		Yours faithfully, For HHARUCH ENVIRO INFRASTRUCTURE LTD.
		AUTHORISED SIGNATORY
7	Liquid effluent emanating from different units will be treated to conform to the prescribed standards before	Liquid effluent generated from individual units within SEZ after primary treatment is transferred through pipeline to a Common ETP for final treatment to conform to the prescribed standards. Final treated effluent is discharged to common conveyance channel of GIDC for deep sea disposal.
	discharge to common conveyance channel.	Online monitoring facility for pH, Ammonical Nitrogen, COD, BOD and TSS is provided for the final treated effluent and also Monthly monitoring is carried out through approved third party.

The summary of results of treated effluent analysis for last six months is as below:

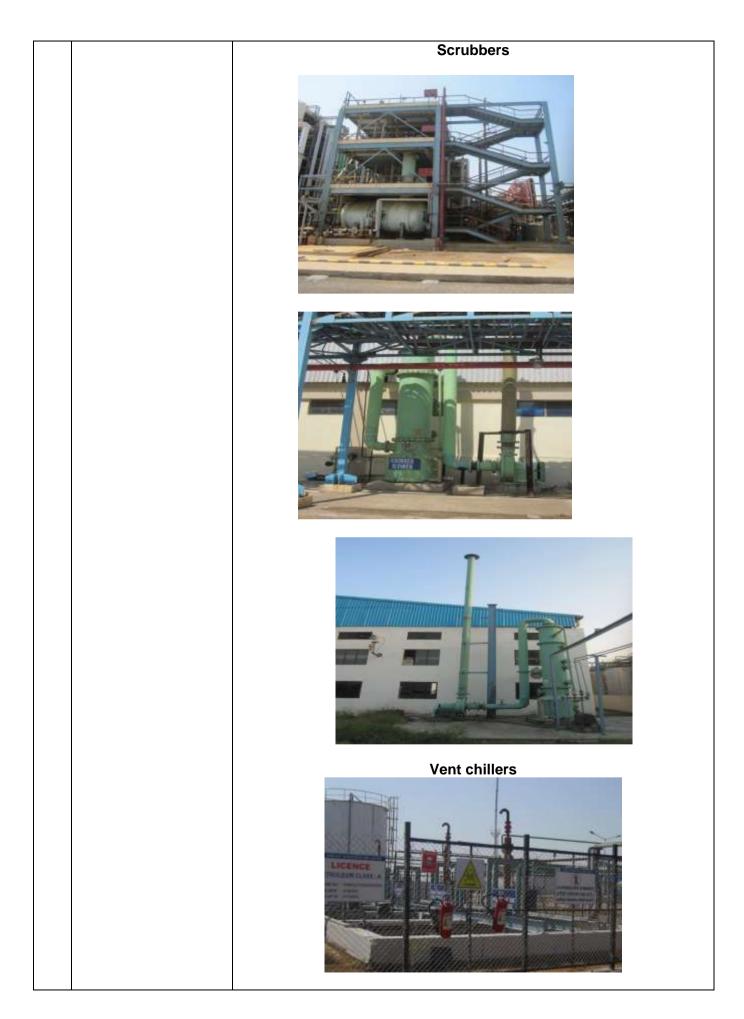
	-	-		-
Parameters	Unit	Min.	Max.	Average
рН		7.15	8	7.59
Temperature	°C	27	32	28.33
Color	Pt.Co.	5	15	9.67
Suspended Solid	mg/L	8	15	11.83
Oil & Grease	mg/L	ND	ND	ND
Phenolic Compound	mg/L	ND	ND	ND
Ammonical Nitrogen	mg/L	8.5	30.2	17.46
BOD (3 days 27 °C)	mg/L	40	65	47.5
COD	mg/L	135	208	170.33
Sulphides	mg/L	0.04	0.08	0.05
Copper	mg/L	0.11	0.14	0.12
Lead	mg/L	NIL	NIL	NIL
Mercury	mg/L	NIL	NIL	NIL
Total Chromium	mg/L	0.13	0.16	0.14
Hexavelent Chromium	mg/L	0.070	0.09	0.08
Nickle	mg/L	0.04	0.07	0.06
Zinc	mg/L	ND	ND	ND
Cadmium	mg/L	ND	ND	ND
Cyanide	mg/L	NIL	NIL	NIL
Arsenic	mg/L	ND	ND	ND
Fluorides	mg/L	0.03	0.12	0.06
nsecticides / Pesticides	mg/L	NIL	NIL	NIL
Selenium	mg/L	NIL	NIL	NIL
Boron	mg/L	NIL	NIL	NIL
Bio Assey Test	%	95	95	95

CETP

8	Adequate measures will be taken to control fugitive emissions from the industries in SEZ.	Various measures are taken to con industries in SEZ. Scrubbers & vent ch emissions from process reactors and instruments are installed at strategic loo VoC. Work place monitoring is done area for ammonia, chlorine & VOC base Further, Ambient monitoring is done agencies. The summary of results for last six mo	nillers an storage cations t at 22 di ed on lik period	re provided to e tanks. Onlir for Ammonia, fferent place cely presence lically throug	o reduce VoC ne monitoring Chlorine and s in the plant of pollutants.
		-			[]
		Chlorine (ppm)	Min.	Max.	Average
		Chlorine tonner near Cooling tower	BDL	BDL	BDL
		Unit-2 PB1	BDL	BDL	BDL
		Unit-2 PB2	BDL	BDL	BDL
		Unit-2 Scrubber-1	BDL	BDL	BDL
		Unit-2 Scrubber-2	BDL	BDL	BDL
		Unit-2 Intermediate Tank Farm area	BDL	BDL	BDL
		Unit-2 RM Tank Farm area	BDL	BDL	BDL
		Unit-2 Chlorine Shed	BDL	BDL	BDL
		UOM is PPM, Detection limit is up	0 to 0.1	PPINI, I LV IS	0.5 ppm
		Ammonia (ppm)	Min.	Max.	Average
		Ammonia Tank Farm	BDL	BDL	BDL
		Fine Chemical Plant Pipe Rack	BDL	BDL	BDL
		Utility area	BDL	BDL	BDL
		3CP ground floor	BDL	BDL	BDL
		UOM is PPM, Detection li	mit is u	p to 0.1 PPM	,
		TLV is 25			
		VOC monitoring in wo			
		Location	Min.	Max.	Average
		Niacinamide Ground floor	BDL	BDL	BDL
		3CP Ground floor	BDL	BDL	BDL
		Near 3CP Hot Oil Tank	BDL	BDL	BDL
		3CP Tank Farm	BDL	BDL	BDL
		FC Ground floor	BDL	BDL	BDL
		FC Second floor	BDL	BDL	BDL
		Petroleum Storage Tanks	BDL	BDL	BDL

Unit-2 PB1	BDL	BDL	BDL
Unit-2 PB2	BDL	BDL	BDL
Unit-2 Scrubber1	BDL	BDL	BDL
Unit-2 Scrubber2	BDL	BDL	BDL
Unit-2 Intermediate Tank farm	BDL	BDL	BDL
Unit-2 Raw material Tank farm	BDL	BDL	BDL
Incinerator	BDL	BDL	BDL
PDI : Polow Dotoctable Limit			

BDL: Below Detectable Limit


Sensitivity of the monitoring instrument is 1 ppm

Ambient air quality monitoring reports

	AA	QM Sta	ation-1	AAC	QM Sta	tion-2	AAQM Station-3			
	Min. Max. Average		Average	Min.	Max.	Average	Min.	Max.	Average	
PM2.5	20.5	24.5	21.87	21.5	25.8	23.27	24.1	30.5	26.38	
PM10	45.5	50.5	48.15	45.5	51.5	49.02	48.5	55.3	52.05	
SO2	10.2	11.5	10.95	10.5	12.5	11.57	11.2	12.5	11.95	
NO2	16.7	20.5	18.63	17.3	22.5	20.43	19.3	22.5	20.52	
NH3	1.2	1.8	1.44	0.8	1.2	0.92	0.7	2.5	1.33	
CO	70	105	90.83	70	115	103.00	100	125	116.67	

Sr.	Pollutant	Time	Permissible limit
No.		Weighted	
		Average	
1.	Sulphur Dioxide	Annual	50
	(SO ₂), μg/ m ³	24 Hours	80
2.	Nitrogen	Annual	40
	Dioxide (NO ₂),	24 Hours	80
	μg/ m³		
3.	Particulate	Annual	60
	Matter	24 Hours	100
	(Size less than		
	10 µm) OR PM10		
	μg/ m ³		
4.	Particulate	Annual	40
	Matter (Size less	24 Hours	60
	than 2.5 μm) OR		
	PM _{2.5} μg/m ³		
5.	Carbon	8 Hours	02
	Monoxide (CO)	1 Hour	04
	mg/m ³		
6.	Ammonia (NH₃)	Annual	100
	µg/m³	24 Hours	400

Complied.

Ammonia detectors

Chlorine detectors

	[00 1			
					OC analyz	er		
					OMLINE VOC AMALYSE		-	
9	The noise levels measured at the boundary of the building shall be restricted to the	Noise monit records are levels to co	maintair mply with	ned. The no in the preva	bise levels lent regula	are below ations.	the pern	
	permissible levels to comply with the	The summa	iry of res		i six montr			
	prevalent regulations.	Noise		Day time	, l		Night tim	
		dB	Min.	Max.	Average	Min.	Max.	Average
		Location-1	67.1	68.2	67.57	62.1	64.8	63.27
		Location-2	64.1	66.5	65.3	63.2	64.3	63.72
		Location-3	63.5	64.8	64.3	54.4	56.2	55.23
		Location-4	65.1	66.5	65.58	54.3	55.5	54.68
		Location-5	63.2	65.1	64.32	52.7	53.8	53.28

10	Noise should be controlled to ensure that it does not exceed the prescribed standards.	 The permissible concentration of Noise in ambient air within the premises of industrial unit: Between 6A.M. and 10P.M.: 75dB (A) Between 10P.M, and 6A.M.: 70dB (A) Complied. All care is taken while selecting the equipment to ensure that noise does not exceed the prescribed standards. Noise mufflers and enclosures are provided for noise attenuation at source, as applicable. Noise monitoring is done monthly at five locations on periphery & records are maintained. The noise levels are below the permissible levels to comply with the prevalent regulations. The summary of results for last six months is as below: 										
			,					K				
		Noise			Day tin				Night			
		dB		∕lin.	Max.		erage	Min.	Ma		verage	
			Location-1 67.1 68.2 67.57 62.1 64.8 63.27									
			Location-2 64.1 66.5 65.3 63.2 64.3 63.72									
		Location		53.5	64.8		54.3	54.4	56.		55.23	
		Location-4 65.1 66.5 65.58 54.3 55.5 54.68										
		Location		63.2	65.1		4.32 Ioise in	52.7 ambient	53.		53.28 premises	
		Between Between Complied	10P. I.	M, and	d 6A.M	l.: 70d	B (A)					
11	The STP/ CETP shall be installed for the treatment of sewage and trade effluent generated to the prescribed standards including odour and treated effluent will be re-cycled to the maximum extent possible for horticulture.	Decentralized modular design STP's have been installed for the treatment of sewage generated to meet the prescribed standards and treated Sewage is utilized for horticulture within the plant area.Trade effluents generated from individual units within SEZ are Primary treated within individual units and thereafter transferred through pipeline to a Common ETP for final treatment to conform to the prescribed standards. Final treated effluent is discharged to common conveyance channel of GIDC for deep sea disposal.Every unit undertakes measures for Reuse and Recycle trade effluents within their process before discharging the effluents for final treatment and disposal at CETP located within the SEZ.The summary of results of treated sewage water analysis for last six months is as below:SuspendedBOD (3 days 27 °C)Residual Chloride										
		STP Solids mg/L mg/L ppm Mi Ma Aver Min. Aver Aver n. x. age Min. Max. Age								-		
1		n. x. age age age age age STP -1 14 16 14.6 10 12 11 0.5 0.7 0.58										

STP -2									
STP -3	13	16	14.5	8	12	10.3 3	0.5	0.7	0.58

Limit: SS=20 mg/l, BOD=30 mg/l

The summary of results of treated effluent analysis for last six months is as below:

	1		1
Unit	Min.	Max.	Average
	7.15	8	7.59
٥C	27	32	28.33
Pt.Co.	5	15	9.67
mg/L	8	15	11.83
mg/L	ND	ND	ND
mg/L	ND	ND	ND
mg/L	8.5	30.2	17.46
mg/L	40	65	47.5
mg/L	135	208	170.33
mg/L	0.04	0.08	0.05
mg/L	0.11	0.14	0.12
mg/L	NIL	NIL	NIL
mg/L	NIL	NIL	NIL
mg/L	0.13	0.16	0.14
mg/L	0.070	0.09	0.08
mg/L	0.04	0.07	0.06
mg/L	ND	ND	ND
mg/L	ND	ND	ND
mg/L	NIL	NIL	NIL
mg/L	ND	ND	ND
mg/L	0.03	0.12	0.06
mg/L	NIL	NIL	NIL
mg/L	NIL	NIL	NIL
mg/L	NIL	NIL	NIL
%	95	95	95
	 Pt.Co. mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7.15 °C 27 Pt.Co. 5 mg/L 8 mg/L ND mg/L 8.5 mg/L 40 mg/L 135 mg/L 0.04 mg/L 0.11 mg/L 0.13 mg/L 0.13 mg/L 0.13 mg/L 0.13 mg/L 0.13 mg/L 0.04 mg/L 0.13 mg/L NIL mg/L 0.04 mg/L 0.04 mg/L 0.013 mg/L 0.04 mg/L ND mg/L NIL	···· 7.15 8 °C 27 32 Pt.Co. 5 15 mg/L 8 15 mg/L ND ND mg/L ND ND mg/L 8.5 30.2 mg/L 40 65 mg/L 40 65 mg/L 135 208 mg/L 135 208 mg/L 0.04 0.08 mg/L 0.11 0.14 mg/L 0.11 0.14 mg/L 0.11 0.14 mg/L 0.13 0.16 mg/L 0.13 0.16 mg/L 0.07 0.09 mg/L 0.04 0.07 mg/L 0.04 0.01 mg/L ND ND mg/L ND ND mg/L ND ND mg/L ND ND mg/L ND

12	For disinfection of waste water ultra violet radiation shall be used in place of chlorination.	water tre of Modul discharg	Chlorination is avoided and Hypo Chlorite solution is used for waste water treatment, as Ultra Violet radiation device for such small capacity of Modular STP are unviable. Further, the treated sewage is not discharged to any public sewerage and fully utilized within the premises for horticulture.									
13	Rainwater harvesting and ground water recharging shall be practiced. Oil & Grease & Suspended matters shall be removed before its utilization for rainwater harvesting.	process harveste tower ma industria area of b for groun	Rain water harvesting and ground water recharging is installed in non- process areas for rejuvenation of ground water. Further, rainwater harvested from the roof top of Utility building is directly used in cooling tower make up instead of recharging to ground, to prevent any industrial pollutants from recharging to ground. None of the roof top area of buildings in manufacturing plant is used for rainwater harvesting for ground water recharge, as they are likely to contain industrial pollutants settled from air emissions.									
14	The solid waste including biomedical and e-waste generated should be disposed off as per prevailing regulations.	• A re a B d w	egulations The Bio uthorized Biomed MW rules to M/s (isposed is given b rith Hazardous che	ed are stored/d -medical waste ical waste mana Globe Bio care. elow. All solid w emicals are disp	isposed off as per progenerated is disposed off as per progenerated is disposed agement agency as p Records of Biomedic vastes that are contained to TSDF or Inc	ed off to er the al waste minated inerator.						
		B1 0	o Medical Wa	iste dispos	al record - 20	18						
		Month	Quantity in Yellow	Quantity in Red	Quantity in Puncture	Total Quantity						
			Bag (gram)	Bag (gram)	proof container (gram)	(gram)						
		Jan-18	1050	250	150	1450						
		Feb-18	800	100	200	1100						
		Mar-18	950 950	250 100	50 150	1250 1200						
		Apr-18 950 100 150 1200 May-18 1150 300 200 1650										
		Jun-18 1400 150 200 1050										
		Jul-18 1050 100 50 1200										
		Aug-18	850	150	150	1150						
		Sep-18	800	100	150	1050						
		Oct-18	1000	150	100	1250						
		Nov-18 900 100 100 1100										
		Dec-18	850	200	50	1100						
		Total	11750	1950	1550	15250						

15 Adequate measures should be taken to prevent odour problem from solid waste processing plant as also from STP and incinerator.

Solid wastes are not processed in the facility and are instead disposed off to 3rd party approved TSDF / Incinerators.

Odors causing solid wastes are stored in drums in dedicated drum storage area and covered with lids to prevent release of VoC's causing odor.

Voluminous inorganic hazardous wastes are stored in loose form in dedicated covered storage sheds and disposed off to TSDF.

Package sewage treatment plants are installed at source of sewage generation and hence Odor issue is eliminated.

All material handling at Incinerators are in closed containers and pipelines thereby prevents the release of odor causing vapors. Further, the incinerator operates at >99.9% destruction efficiency and is provided with sufficient stack height as per CPCB guidelines and thus prevents odor generation.

Drum storage shed:

Packaged STP

	General Conditions	Compliance status
1	The environmental safeguards contained in the EIA/EMP should be implemented in letter and spirit.	Environmental safeguards contained in EIA-EMP includes Scrubbers, ESP, bag filters, incinerator, ETP, STP, stack of adequate height, rain water harvesting, noise attenuators, Green Belt development, online monitoring. All the measures as detailed in the EIA –EMP report are implemented and are operating satisfactorily.
2	6 monthly monitoring reports should be submitted to the Ministry and its	Complied. 6 monthly monitoring reports are regularly being sent to the Ministry and its Regional Office. The last report was sent on 24.07.2018.
	Regional Office.	
3	Officials from the Regional Office of MOEF, Bhopal should be given full cooperation, facilities and documents data by the project proponents during their inspection.	Being complied and shall be continued as directed.
4	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board.	The stipulations made by the SPCB are complied with. The compliance is regularly audited by the Schedule 1 auditor appointed by the GPCB. The last auditing by the Schedule 1 auditors was completed on September 2018 and report submitted to GPCB.

		<section-header><section-header><image/><image/><image/><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>
		Prepared By
		CHARUSAT
		Environmental Engineering Laboratory M. S. Patel Department of Civil Engineering, Chandubhai S. Patel Institute of Technology (CSPIT) Charotar University of Science & Technology, CHARUSAT CHARUSAT Campus, Changa, Dist.: Anand, State: Gujarat. PIN Code - 388 421
5	In the case of any change(s) in the scope of the project, the project would require a fresh appraisal by this Ministry	In the case of any change(s) in the scope of the project, we will approach for a fresh appraisal by this Ministry. For change in scope JIL-SEZ has received EC amendment from MoEF&CC vide no. 21-1087/2077-IA.III dtd.31 st March 2017 for including the manufacturing of Technical grade Pesticide and Pesticide Intermediates (Category 5b) with no increase in pollution load.
6	The locations of ambient air quality monitoring stations shall be decided in consultation with the SPCB	Three Nos. of Ambient air quality monitoring locations has been finalized in consultation with the GPCB and the monitoring is carried out quarterly through 3 rd party approved agencies for all criteria pollutants as given below. Ambient air quality monitoring reports

			AA	QM St	ation-:	1	AAC	M Sta	tion-2	AAQ	M Stat	ion-3
			Min.	Max.	Avera	ge	Min.	Max.	Average	Min.	Max.	Average
		PM2.5	20.5			1	21.5	25.8	1	24.1	30.5	26.38
		PM10	45.5	50.5	48.1	5	45.5	51.5	49.02	48.5	55.3	52.05
		SO2	10.2	11.5	10.9	5	10.5	12.5	11.57	11.2	12.5	11.95
		NO2	16.7	20.5	18.6	3	17.3	22.5	20.43	19.3	22.5	20.52
		NH3	1.2	1.8	1.44	ł	0.8	1.2	0.92	0.7	2.5	1.33
		СО	70	105	90.8	3	70	115	103.00	100	125	116.67
7	Regular monitoring of ground water for all relevant parameters shall be periodically monitored and report	Sr. No. 1. 2. 3. 4. 5. 6. Ground below. Report	Polluta Sulphu (SO ₂), Nitrog (NO ₂) Particu (Size µm) C m ³ Particu (Size µm) C (Size µm) C arbo (CO) n Ammo µg/m ³ wate	ant $\mu g / m^3$ $\mu g / m^2$ $\mu g / m^2$ $\mu g / m^2$ $\mu g / m^2$ $\mu g / m^3$ $\rho m Mon mg/m^3$ $\rho m Mon mg/m^3$ $\rho m Mon mg/m^3$ $\rho m Mon$ $\mu g / m^3$ $\rho m Mon$ $\mu g / m^3$ $\rho m Mon$ $\mu g / m^3$ $\rho m Mon$ $\rho m Mon$ m Mon m	ioxide ioxide atter an 10 I ₁₀ µg/ Matter an 2.5 M 2.5 moxide (NH ₃) ity is m	Tin Av An 24 An 24 An 24 An 24 An 24 8 H 1 H An 24 Beas	me V verage inual Hours inual Hours Hours Hours Hours Hours sured	for mal Official	Imit Solution 50 80 40 80 60 100 40 60 02 04 100 400	issible	meters y, CPC	s as given B and
	shall be submitted to the concerned Regional Office of the Ministry, CPCB and SPCB.	•		grour	nd wate	er a	nalys	is is a	s below.			

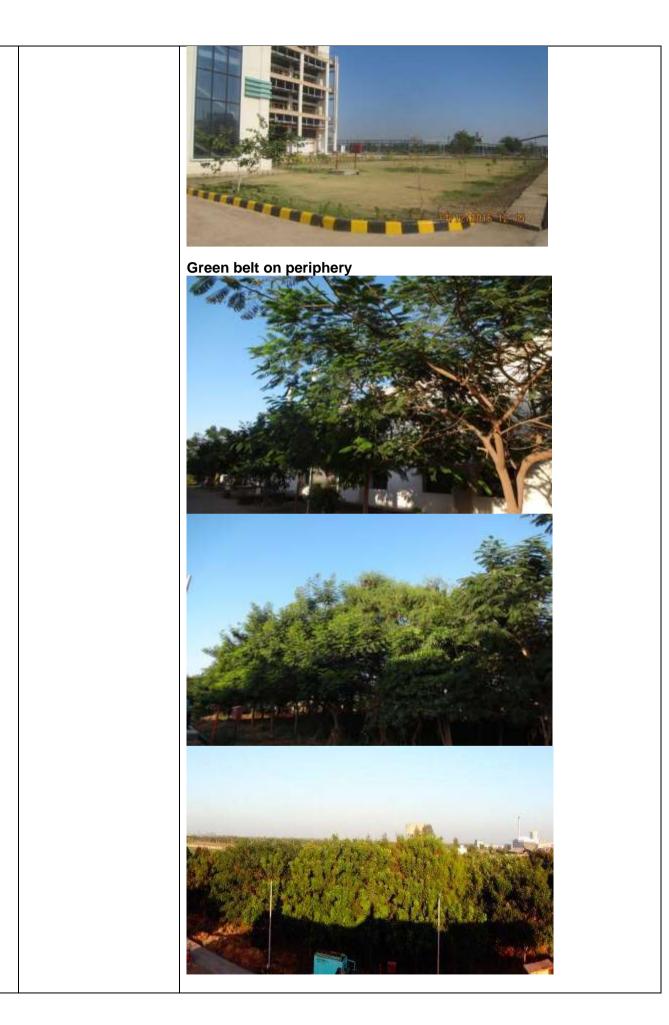
Parameters Unit Petrowell- Petr				Ground Water Quality								
Image: State in the s			Daramatora	110:4	Ground			October 20	19			
Image: state Image: state<			Parameters	Unit	Daireus					Vilaurt		
Taste										-		
Oddr			Taste							Agreeable		
pH 8.31 7.94 8.14 7.28 7.34 7.84 Turbidity NTU 1 2 2 3 3 2 2 3 3 2 10 14 13 11 10 14 13 11 11 11 10 14 13 11 11 11 10 16 13 11 11 10 14 13 11 11 10 16 16 16 16 17 18 17 17 18 10 11			Color	pt.co.	4	5	5	8	8	6		
Image: Turbidity MTU 1 2 2 3 3 2 Total Dissolved Solids mg/L 615.5 598 946 2933 1306 85 Suspended Solids mg/L 12 10 14 13 11 10 Conductivity mg/L 125.5 118.2 17.1 395.2 1356 Compet racu mg/L 0.7 0.52 102 0.8 0.06 0.22 0.01 0.80 0.4 0.06 0.22 0.02 0.80 0.05 0.02 0.04 N.0			Odor		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable		
8 The project authorities suborded sizes of MSIHC rules, 1989 & its amendments are strictly computed sizes of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. The project authorities of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. The project authorities of MSIHC rules, 1989 and its amendments. Authorization from the SPC Stall be obtained for collection, treatment, storage, and disposal of hazardous wastes. The project authorities of MSIHC rules, 1989 and its amendments. Authorization from the SPC Stall be obtained for collection, treatment, storage, and disposal of hazardous wastes. The project authorities of MSIHC rules, 1989 and its amendments. Authorization from the SPC Stall be obtained for collection, treatment, storage, and disposal of hazardous wastes. The project authorities of MSIHC rules, 1989 and its amendments. Authorization from the SPC Stall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Stall Also and MSIHC rules, 1989 and its amendments. Authorization from the SPC Stall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) - 199.5 KL c) Chlorine – 134 nos. tonner d) Hydrogen – 270 nos. cylinders			i							7.84		
8 The project authorities shall strictly comply with guidelines of MSHC rules, 1989 & its amendments. Suspended Solids mg/L 12 10 44 13 11 10 Conductivity mg/L 155 1108.3 1654.6 577.6 3555.2 1354 Chordie (as C) mg/L 055 148.2 171.1 395 204.9 385 Chordie (as C) mg/L 0.78 0.22 0.08 0.06 0.22 0.08 0.06 0.022 0.08 0.05 0.055 0.055 0.052 0.055 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.055 0.052 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.056 0.054 0.022 0.061 <td></td> <td></td> <td>· · · · · ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			· · · · · ·									
Conductivity ms/cm 1315 1108.3 1654.6 577.6 395.2 133.4 Calcum (as Ca) mg/L 135.5 1148.2 171.1 395 260 135 Conductivity mg/L 125.5 117.7 187.5 172.6 204.9 385 Copper (as Cu) mg/L 0.7 0.62 1.02 0.38 0.04 0.06 Free residual clionine mg/L 0.7 0.62 1.02 0.38 0.04 0.06 Mineral OII mg/L 16.8 121 78.4 90.8 221 28.7 Managenes (as MM) mg/L 20.01 N.D 0.03 0.04 N.D. N.D Nutrate (as NO) mg/L 200 420 450 400 400 380 212 24.7 Total alkalinty (as CaO3) mg/L 200 420 450 400 400 300 360 0.05 0.02 24.7 165.1 18.8 180.7				-								
8 The project authorities of MSIHC rules, 1989 & its amendments. a) Ammonia – 271.92 M3 b) Petroleum mg/L 10.0 N.0. N			· · · · · · · · · · · · · · · · · · ·									
8 The project authorities shall strictly complete Solution of the storage license has been obtained from PESO as per the MSIHC rules, 1989 & its amendments. Authorization from the storage license has been obtained from PESO as per the MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Chloride (as CI) mg/L 20.71 27.5 27.6 20.49 385 8 The project authorities of MSIHC rules, 1989 as its amendments. Compared MSIHC rules, 1989 as its amendments. 8 The project authorities of MSIHC rules are manufactured or Imported by the JIL-SEZ. Counter MSIHC rules are manufactured or Imported by the JIL-SEZ. Solum (MSIHC rules are manufactured or Imported by the JIL-SEZ.												
S The project authorities shall strictly comply with guidelines of MSHC rules, 1989 & is amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Copper (as Cu) mg/L mg/L 0.03 0.04 0.06 0.022 0.08 0.065 0.022 Fluorides (as F) mg/L NII												
Fluorides (as F) mg/L 0.57 0.62 1.02 0.38 0.4 0.06 Free residual chlorine mg/L Nil				-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
Image: second												
Mineral Oilmg/LNilNilNilNilNilNilNilMageresium (as Mg)mg/L15.812.178.490.822.128.7Manganese (as Mm)mg/L15.812.178.490.822.128.7Manganese (as Mm)mg/L0.02N.D.0.030.04N.D.N.D.Nitrate (as NO3)mg/L22.515.317.365.517.218.3Phenolic compounds (as C6HSOHmg/L0.02N.D.0.030.04N.D.N.D.Sulphate (as SO4)mg/L22.016418021224Total alkalinity (as CaCO3)mg/L460420450400400300Sodium (as Na)mg/L321.4276.5131.4560.3348.6365Potassium (as X)mg/L321.4276.5141.4506.30.0460.03Cadimiumng/L0.070.040.030.610.060.05Cadimiumng/L0.070.040.030.610.060.05Cadimiumng/L0.010.040.030.610.0400.040.03Dissolve Oxygenmg/L0.15.15.85.55.35.56.1Biochemical Oxygen Demandmg/L5.5Nill3.5NillNillDissolve Oxygenmg/L1.5Nill3.5NillNillDissolve Oxygen Demandmg/L												
8Magnesium (as Mg)mg/L16.812.178.490.822.128.7Maganese (as Mn)mg/L0.01N.D.0.030.04N.D.N.D.Nitrate (as N03)mg/L22.515.317.365.517.218.3Phenolic compounds (as C6H3O4)mg/L221516418021224Total admini (as (as CaC03)mg/L260420450400400380Total hardmes (as CaC03)mg/L353.53.64.64.12.8Lead (as Pb)mg/L0.070.0440.030.610.060.05Calmiummg/L0.070.0440.030.610.060.05Calmiummg/L153.55.55.35.55.55.55.55.5Biochemical Oxygen Demandmg/L5.15.85.55.35.55.1NILDisole Oxygen Demandmg/L5.15.85.55.35.55.1NILTotal ColiformsCounts /LoomiAbsentAbsentAbsentAbsentAbsentAbsentWith guidelines of MSIHC rules, 1989 & its amendments.associal complex and its amendments.associal complex and its amendments.associal complex and its amendments.at Its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.0Ammonia – 271.92M3b)Petrol												
Manganese (as Mn)mg/L0.01N.D.0.030.04N.D.N.D.Nutrate (as NO3)mg/L25.515.317.365.517.218.3*henolic compounds (as C6H50Hmg/L22.1516418021224Total akalimity (as CaC03)mg/L220420450400400380Total hardness (as CaC03)mg/L220420450400400380Total hardness (as CaC03)mg/L220136.0740580Sodium (as Na)mg/L3.53.53.64.64.12.8Lead (as Pb)mg/L0.070.040.030.610.060.05Cadimiummg/LN.D.N.D.N.D.N.D.N.D.N.D.Chromiummg/L0.040.0410.0440.5050.0490.032Zinc (as Zn)mg/LN.D.N.D.N.D.N.D.N.D.N.D.Dissolve Oxygen Demandmg/L5.15.85.35.56.1Biochemical Oxygen Demandmg/L22Nit101015NitTotal Coliforms//00mlAbsentAbsentAbsentAbsentAbsentShall strictly comply with guidelines ofMSIHC rules, 1989 and its amendments.aAmmonia – 271.92 M3NSIHC rules, 1989 and its amendments.Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.<				-						28.7		
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the storage license has been obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 & its amendments. 8 The project authorities of hazardous wastes. Guidelines of MSIHC rules, 1989 & its amendments. 8 The project authorities for collection, readments. Guidelines of MSIHC rules, 1989 & its amendments. 8 The project authorities for collection from the storage and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 & its amendments. 8 The project authorities for collection from the storage and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 & its amendments. 8 The project authorities collection from the storage license has been obtained for collection, reatment, storage, and disposal of hazardous wastes. Guidelines of moner 9 Petrolection of the storage license has been obtained for mage. 1300 millogen and the storage license has been obtained from PESO as per the MSIHC rules are stored in the set of the storage license has been obtained from the set of the storage license has been obtained from PESO as per the MSIHC rules are manufactured or Imported by the JIL-SEZ.			Manganese (as Mn) mg/L 0.01 N.D. 0.03 0.04 N.D. M.D.									
8The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 and its amendments. amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 and its amendments. complex of magnet and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 A to magnet addition of magnet and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 A to magnet addition of magnet addi			Nitrate (as NO3)	mg/L	25.5	15.3	17.3	65.5	17.2	18.3		
8The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments.Guidelines of MSIHC rules, 1989 & attact the storage license has been obtained from PESO as per the MSIHC rules, 1989 & its amendments.Guidelines of MSIHC rules, 1989 & and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 A and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 A and its amendments.State and the storage license has been obtained from PESO as per the MSIHC rules, 1989 A b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KLCounts and manufactured or Imported by the JIL-SEZ.State AlbertAbsent MSIHC rules are manufactured or Imported by the JIL-SEZ.			² henolic compounds (as C6H5OH	mg/L	0.02	N.D.	0.03	0.04	N.D.	N.D.		
8The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & tis amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.Total hardness (as CaCO3) mg/Lmg/L 460420 420750 13601360 446740 5808Total hardness (as CaCO3) Sodium (as Na) (as Na)mg/L mg/L3.5 3.5 3.63.6 4.64.1 4.1 2.8 4.62.8 4.64.1 4.1 2.8 4.62.8 4.64.1 <td></td> <td></td> <td>Sulphate (as SO4)</td> <td>mg/L</td> <td>22</td> <td>15</td> <td>164</td> <td>180</td> <td>212</td> <td>24</td>			Sulphate (as SO4)	mg/L	22	15	164	180	212	24		
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 and its amendments. Guidelines of MSIHC rules, 1989 A its amendments. Absent Abs			Total alkalinity (as CaCO3)	mg/L	260	420	450	400	400	380		
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 and its amendments. Guidelines of MSIHC rules, 1989 and its amendments. Absent Absent Absent Absent Absent Absent Absent Absent Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of Intervented and the storage license has been obtained for collection, treatment, storage, and disposal of hazardous wastes. Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL 6 Further, no hazardous chemicals covered under MSIHC rules are manufactured or Imported by the JIL-SEZ.			Total hardness (as CaCO3)	mg/L	460	420	750	1360	740	580		
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 and its amendments. Guidelines of MSIHC rules, 1989 and its amendments. Absent A			. ,	-								
Cadmiummg/LN.D.N.D.N.D.N.D.N.D.N.D.N.D.N.D.Chromiummg/L0.040.0410.0440.5050.0490.032Zinc (as Zn)mg/LN.D.N.D.N.D.N.D.N.D.N.D.N.D.Dissolve Oxygenmg/LS.1S.8S.5S.3S.56.1Biochemical Oxygen Demandmg/LS.1S.8S.5S.3S.56.1Biochemical Oxygen Demandmg/L2.2NIL101015NILChemical Oxygen Demandmg/L2.2NIL101015NILTotal ColiformsCounts /100mlAbsentAbsentAbsentAbsentAbsentFecal ColiformsCounts /100mlAbsentAbsentAbsentAbsentAbsentMSIHC rules, 1989 & with guidelines of 												
8Chromiummg/L0.040.0410.0440.5050.0490.032Zinc (as Zn)mg/LN.D.N.D.N.D.N.D.N.D.N.D.N.D.N.D.Dissolve Oxygenmg/L5.15.85.55.35.56.1Biochemical Oxygen Demandmg/L6.5NIL3.533.5NILChemical Oxygen Demandmg/L22NIL101015NILTotal ColiformsCounts /100mlAbsentAbsentAbsentAbsentAbsentAbsent8The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments are strictly complied. The following Hazardous chemicals are stored in the SEZ f which the storage license has been obtained from PESO as per the MSIHC rules 1989 and its amendments.a)Ammonia – 271.92 M3 b)Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL c)c)Chorine – 134 nos. tonner d)Hydrogen – 270 nos. cylinders6Hydrogen – 270 nos. cylinders												
Image: Second												
BDissolve Oxygenmg/L5.15.85.55.35.56.1Biochemical Oxygen Demandmg/L6.5NIL3.533.5NILChemical Oxygen Demandmg/L22NIL101015NILTotal ColiformsCounts /100mlAbsentAbsentAbsentAbsentAbsentAbsentAbsent8The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes.Guidelines of MSIHC rules, 1989 and its amendments. a) Ammonia - 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) - 199.5 KL c) Chlorine - 134 nos. tonner d) Hydrogen - 270 nos. cylinders6Further, no hazardous chemicals covered under MSIHC rules are manufactured or Imported by the JIL-SEZ.				-								
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments are strictly comply with guidelines of MSIHC rules, 1989 and its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 Mit amendments. Absent Abs												
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments are strictly complied. The following Hazardous chemicals are stored in the SEZ f which the storage license has been obtained from PESO as per the MSIHC rules, 1989 and its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1920 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL 0 Chemical Oxygen Demand mg/L 22 NIL 10 10 15 NIL 8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments are strictly complied. The following Hazardous chemicals are stored in the SEZ f which the storage license has been obtained from PESO as per the MSIHC rules 1989 and its amendments. a) Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL c) c) Chorine – 134 nos. tonner d) Hydrogen – 270 nos. cylinders Further, no hazardous chemicals covered under MSIHC rules are manufactured or Imported by the JIL-SEZ.				-								
Total Coliforms Counts /100ml Absent <				-								
8 The project authorities shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. Guidelines of MSIHC rules, 1989 & its amendments are strictly complied. The following Hazardous chemicals are stored in the SEZ f which the storage license has been obtained from PESO as per the MSIHC rules 1989 and its amendments. a) Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL c) Chlorine – 134 nos. tonner d) Hydrogen – 270 nos. cylinders Further, no hazardous chemicals covered under MSIHC rules are manufactured or Imported by the JIL-SEZ.			Total Coliforms	Counts	Absent	Absent	Absent	Absent	Absent	Absent		
 shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal of hazardous wastes. complied. The following Hazardous chemicals are stored in the SEZ f which the storage license has been obtained from PESO as per the MSIHC rules 1989 and its amendments. a) Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL c) Chlorine – 134 nos. tonner d) Hydrogen – 270 nos. cylinders Further, no hazardous chemicals covered under MSIHC rules are manufactured or Imported by the JIL-SEZ. 			Fecal Coliforms	Counts	Absent	Absent	Absent	Absent	Absent	Absent		
	8	shall strictly comply with guidelines of MSIHC rules, 1989 & its amendments. Authorization from the SPCB shall be obtained for collection, treatment, storage, and disposal	 complied. The following Hazardous chemicals are stored in the SEZ for which the storage license has been obtained from PESO as per the MSIHC rules 1989 and its amendments. a) Ammonia – 271.92 M3 b) Petroleum (Methanol, Benzene, Xylene, MEK, Toluene, Acetone, n-Hexane) – 199.5 KL c) Chlorine – 134 nos. tonner d) Hydrogen – 270 nos. cylinders 							the re t,		

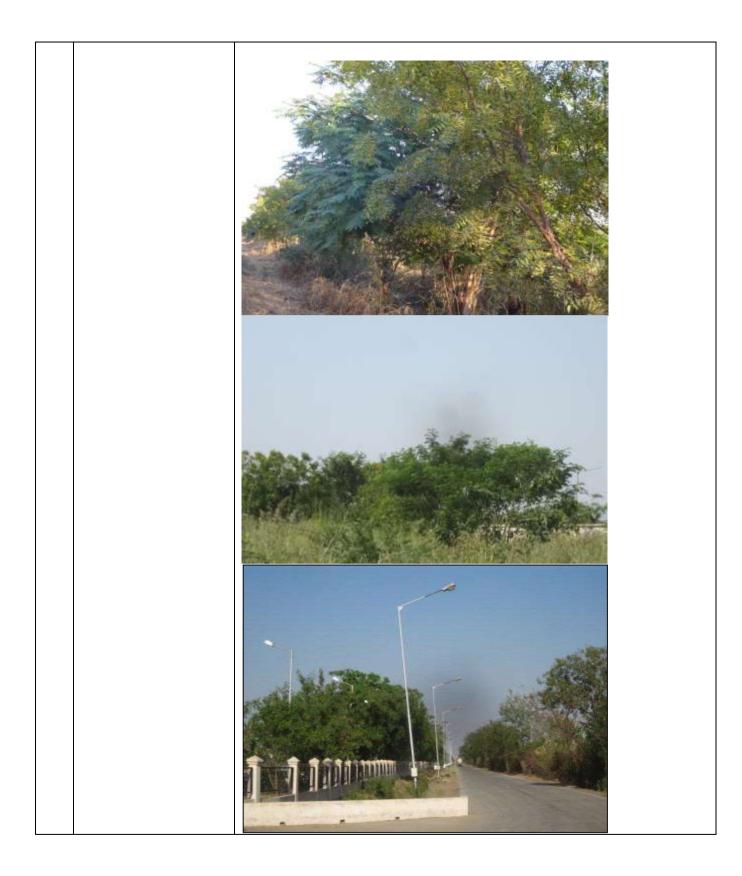
9	The Ministry reserves the right to modify additional environmental safeguards subsequently, if found necessary. Environment	Noted.							
	Clearance granted will be revoked if it is found that false information has been given for approval of the project.								
10	Necessary permission shall be obtained from the State Fire Department for providing fire safety measures, If any forest land is involved in the proposed site, clearance under the Forest Conservation Act, 1980 from the Competent Authority shall be taken.	Plans are appro Health (DISH). All fire safety m The SEZ of 107 Hence, The Fo	neasures are 7 Hac. is with	ta nin	ken as p the GID	ber appro	ove no f	d plan. forest l	land is involved.
11	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	Complied. Occur regular basis at Factories Act. A sample copy given as below	of the Occup	ion	th and r	ecords m	nair	ntainec	-
		1	EleniteLisal	-	20EPT : WORKS	2885			
			Organic Obeniaai	10	Name of Instanting Property	Satal N Name of Date of D			
				-	Dangarania percana Operation	f Worker Worker			
			Deputy Monager	-	Nature of Joh or Occupation	Title Ra			
			_		Ram manerial products or he product labers in he expensed as	inther in the Ragisler of adult Werkar: f Werker: Softe			
			00/09/2010		Date of Posting	Water			-
				4	there of herving - in transfer or transfer				
			20012030.27	-	Retaining for the bidge forcing of transfor	11040231 Alay Towari Male Male		Pros	
				-	Signa and		Real	FOR their and	
					during a		Health Register	FORM NO. 32 (Proceibed under Rule 68-T and	
			President examination Bloods Using Trivestanting PTT, Automaty, BCO, Eye Vanue		Problem of			sT and IQ()	-
			Pic. 15	+	Units Paris S.				100
			c	W	Thdrivery Thdrivery hore that work (5)				
				10.0	anota inv asch Bidrateul				
		Cr. Herebart F. Chauthan Mass: Cr. M. Rag Kol: G-ANZTI Chaudioural Health Center Indicated Matandethers (Ma Magazi Bharrod)	- 8	beed Und D function Con Stage above - Network the	Nature of Second				

12	The Company sh harvest rainwate surface as well a from the rooftops the buildings & s water drains to recharge the gro water & use it for various activities the project to conserve fresh w	r from is s of torm torm und r the of	process areas for rejuvenation of ground water. Further, rainwater harvested from the roof top of Utility building is directly used in cooling tower make up instead of recharging to ground, to prevent any industrial pollutants from recharging to ground. None of the roof top area of buildings in manufacturing plant is used for rainwater harvesting for ground water recharge, as they are likely to contain industrial pollutants settled from air emissions.									
13	The project prop shall also comply all the environme protection measu and safeguards proposed in the EIA/EMP report.	y with ental ures										
14	of the environme	 company shall ertake eco- elopmental asures including munity welfare asures in the ect area for the rall improvement Under the company's CSR activities, various Eco development measures are undertaken in the neighboring community. Some of the activities includes green belt development, Community tree plantation programs, Environmental education to school children, Community awareness program on water conservation, waste segregation and organic waste composting. Further, Community Welfare measures are undertaken in the peighboring villages including medical camps. Drinking water facility. 										
	CS	ř	ivity cost expenditure during July to Dec 2018 (Rs.)									
	Month	Health Care	Education	Livelihood	Trust Building Activities	Administrative Expenses	Total					
	July'2018	183460	87833	7500	0	7500	286293					
	August'18	183960	87833	0	10000	3500	285293					
	September'18	186960	139833	15000	29000	38500	269460					
	October'18	182960	97833	0	10000	3500	294293					
	November'18	182960	87933	0	0	7500	278393					
	December'18	199260	87933	0	30000	28500	345693					
	Total						1759425					

Sr. No	Education	Health	Lively Hood	Rural development OR Trust building	Employees Engagements
1	Monthly meeting with CRC	OPD Mobile health services established and running effectively In 13 Villages covering with 15000 community people and 2500 Muskaan students	Computer Training program at four Muskaan school HP World On Wheel project.	meeting ,Parents meeting ,CRC meeting NGO &	Swachhata Hi Seva , Plantation Programme on world Environment Day accomplished by the Unit Head , HOD's and all employees
2	Parents Teachers Meeting	Arranging yearly Blood Donation camp for our employees	Agriculture demonstration on wormi compost Farmer's field preparation for organic & cash crops.	Cement Benches for five villages	Unit Head Participated In annual Day celebration & HR head and PRO participated in Muskaan activities
3		Health service for Malnourishment & organizing counselling meeting on Mamta divas (Immunization day)is going on .	Discussion held with AVP CSR for Training on Tailoring .and support for garment making to the needy SHG	Community Park maintained & R.O filter Plant maintenance and support for water distribution at Vilayat	Contributions for Birth day Books and Planning Has been made for participation in Muskaan activities
4	Ŭ	AID's Day celebrated in1st Dec'18	Training on computer for all village youth of two villages Kolauna & Vorasamni , 53 trained in Kolauna village	Planning held for Caram & Cricket tournamentat Vilayat & Tracksuit distribution for Muskaan KHOKHO & Yoga team	Yearly Blood donation Camp planned for February 2019.

CSR ACTIVITIES BHARUCH 2018


	<image/>	<image/> <image/> <image/>
15	A separate Environmental Management Cell equipped with full- fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	Complied. The Environment Management cell presently comprises 2 Nos. of Environment Engineers (B. E), 1 No. of MSc Chemistry graduates and 4 Nos. of staff and Labour force with a full-fledged environmental laboratory to carry out the Environmental Management and Monitoring Functions. Further, an Environment Specialist at the Company's Corporate office in Noida, Uttar Pradesh supports the environment management and improvement programs.
16	The open spaces inside the SEZ should be preferably landscaped and covered with vegetation of indigenous variety. Green belt of adequate width and density will be provided all around the periphery of the SEZ with local species.	The open spaces inside the SEZ is landscaped and covered with vegetation of indigenous variety. 26 acres of area along the periphery of the SEZ is developed into green belt. Till date, 11094 nos. of plants on the periphery & inside area are planted giving priority to local plant species such as Shirish, Neem, Gulmohar, Amaltash, Jamun, Saptaparni, Jacaranda, Peltoforum, Palash, Teak etc. Further, large areas of landscaping with lawns and exotic species are planted creating green islands in and around the manufacturing plant, administration building, Utility areas, Canteen and Fire stations, Customs control office, along the road sides, plant offices, etc,. An area of >15 acres of landscaping with green lawn and plantation are created till date in addition to the green belt development with large tree species.


Greenbelt plants details	
Plants	Qty. (No.
Gulmohar (Delonix Regia/ Poinciana Regia)	2380
Bauhinia black (Orchid tree)	300
Azardirachtaindica (Neem)	1640
Amaltash (Cassia Fistula)	570
Jamun	525
Alstoniascholaris (Saptaparni)	730
Rain Tree (Shirish)	730
Blue Jacaranda	165
Fern tree	75
Peltoforum	1350
Palash	660
Teak	450
Palm tree	180
Champa (Plumeria)	150
Saru (Casuarina)	285
Bengali Baval (Babul)	290
Thespasiapopulea (Paras Pipal)	180
Fycus	50
Polyalthia pendula (Pendula asopalv - Ashoka)	160
Badam	100
Coconut tree (Cocos nucifera)	50
Borsali	24
Conocarpus	50
TOTAL	11094

Landscaping

17	The project authorities shall earmark adequate funds to implement the conditions stipulated by the MOEF as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.	During the project phase, all the investment that were required for complying with the conditions stipulated in the Environmental clearance are made. Further to the same, presently during the operation phase, every year financial budget is allocated for operating the environmental facilities and also for improving the environmental performance. Such funds allocated are not diverted for any other activity/purpose. The annual environment budget for the SEZ to operate and maintain the environmental facilities is about Rs.1.1 Crore. Capital investment made for environment management over the past 3 years is about Rs.1.4 Crores.
18	The implementation of the project vis-a-vis environmental action plans shall be monitored by the concerned Regional Office of the Ministry/ SPCB/ CPCB. A six monthly compliance status report shall be	A six monthly compliance status report is regularly submitted to monitoring agencies like Regional Office of the Ministry/ SPCB/ CPCB and is also posted on the website of the Company. The last compliance report submitted was on 24.07.2018.

	submitted to monitoring agencies and shall be posted on the website of the Company.			
19	These stipulations would be enforced among others under the provisions of the Water Act, 1974, the Air act 1981, the Environment Protection Act, 1986 and Public Liability Insurance Act 1991.	The GPCB has granted Consent to Establish and Consent to Operate under the provisions of the Water Act, 1974, the Air act 1981 and the conditions stipulated therein are complied with. Further, JIL-SEZ has undertaken an insurance policy under the provisions of the Public Liability Insurance Act 1991. The compliance to the various consents issued by the GPCB are periodically audited and verified by Schedule 1 auditors nominated by the GPCB. The last such audit was completed on September 2018.		
20	The project proponent shall enter in to MOU with all buyers of the plot to ensure operation and maintenance of the ETP/STP/CETP/TSDF etc.	Presently there are two manufacturing facilities installed in the SEZ that are operational since 2011 and 2013 respectively. The JIL-SEZ has entered in to MOU with these buyers of the plot to ensure operation and maintenance of the common facility Viz., CETP, Liquid Incinerator, Toxic gas incineration, Hazardous Waste storage facility, Facility for Effluent discharge to GIDC pipelines, Fire services, Canteen, Truck parking, Occupational Health Centre, etc. Similar MoU shall be entered into all buyers of land in the SEZ.		
21	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry at http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers.	Complied. The advertisement for the Environmental Clearance issued was published in The Times of India and Gujarat Samachar dated 11.07.2008. A copy of Environmental Clearance was also submitted to GPCB. n AMC CC in the semifi- ket Academy beat GCI r-based Base Cricket A- feated GCI by three wick- SGVP Trophy on Thurs- after batting first, put on vers with Raj Gobel pick- rhar was the star of the his 64-ball 42. Juliant Infrastructure Limited-SEZ Juliant Infrastructure Limited-SEZ Pot S , GIDC, Vilayat, District Bharuch, Gujarat. Public NOTCE This is to inform to the public that M/s Jubliant Infrastructure Limited-SEZ, Piot 5, GIDC, Vilayat, District Bharuch, Gujarat. Public NOTCE This is to inform to the public that M/s Jubliant Infrastructure Limited-SEZ, Piot 5, GIDC, Vilayat, District Bharuch, Gujarat. Public NOTCE This is to inform to the public that M/s Jubliant Infrastructure Limited-SEZ, Piot 5, GIDC, Vilayat, District Bharuch, Gujarat. Public NOTCE This is to inform to the public that M/s Jubliant Infrastructure Limited-SEZ, Piot 5, GIDC, Vilayat, District Bharuch has been accorded an amendment to their existing Environmental Clearance vide MOEF letter no. 21-1087/2007-1A.III dated 03.11.2011. The copy of the letter is available with Gujarat Pollution Control Board and on the website of the Ministry of Environment & Forest at http://envfor.nic.in. Piace : Vilayat <u>BENIOR VICE PRESIDENT - SEZ</u>		

		he public ied third Ltd in an ider and s in order iwari Gas mplating and the sibility of beware of	ર્ગ સ્યુબિલ ગ્લ ઇન્ફાસ્ટ્રકચર લિમિટેડ, (સેઝ) પ્રાણા બોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, ગુજ્યત મહેર સુચવા આ સાથે જોઠ જવાવે જણાવવામાં આવે છે કે, મે. બ્યુબિલન્ટ ઇન્ફાસ્ટ્રક્સ્સ લિમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને શેમિટેડ, (સેઝ), પ્લોટ પ, ઝ,આઇ.ડી.સી, વિલાયત, પિ. ભરુચ ને યત્ર કમાંક ને સ્ટ શેમિટેડ, સેટ. ગર રાગ્ટ આઇ.ડી.સી. બાળવા કાર્મ્યા સ્ટેડ, બ્રાઇડ ટેલ્ડ સ્ટામિટ, સંબ્રાઇ ન બ્રાઇ ટર. આઇ.ડી.આ આઉ.સી.સાથ માઉસો સાથે સિટાસ સ્ટામ્ય આઇ.ડી.આ આઉ.સી.સાથ માઉસો સાથે સિટાસ સાથે સિટાટ સ્ટામ્ય આઇ.ડી.આ આઉ.સી.સાથ માઉસો સાથે સાથે સિટા સાથે સિટાટ સાથે બ્રાટ્સ સાથ સાથે છે.	
22	Any appeal against this environmental clearance shall lie with the National Environment Appellate Authority, if preferred, within a period of 30 days as prescribed under section 11 of the National Environment Appellate Act, 97.	Noted.		

Compliance Report

For the EC amendment received vide letter No. 21-1087/2007-IA.III dtd. 03.11.2011

As on 29.01.2019

PAR T A	SPECIFIC CONDITIONS						
I.	Construction Phase						
 Solvent recovery plant shall be installed to recover the solvents and recovery shall not be less than 95 percent. All the solvents shall be handled in closed conditions and chillers shall be provided for chilled brine circulation to condensate the solvent vapours and reduce solvent losses. The solvents generated from the vents and in the work zone the GPCB CPCB and Ministry's Regiona Office at Bhopal. 		Solvent recovery system is insta It is a part of in-process reco recovered & recycled into the part All the solvents are handled in and vent chillers are provided of tanks & reaction vessels for condensate the solvents genera Work zone environment is more submitted to the GPCB. CPC Regional Office, Bhopal along we report. The summary of results	overy who rocess. closed co on the ve chilled ated from nitored m CB, Vado vith six mo	ereby ab onditions ont of sol brine c the vent nonthly & odara ar onthly EC	ove 95% is (in-process) vent storage irculation to s. a reports are of Ministry's C compliance		
		VOC monitoring in w			Averag		
		Location	Min.	Max.	e		
		Niacinamide Ground floor	BDL	BDL	BDL		
		3CP Ground floor	BDL	BDL	BDL		
		Near 3CP Hot Oil Tank	BDL	BDL	BDL		
		3CP Tank Farm	BDL	BDL	BDL		
		FC Ground floor	BDL	BDL	BDL		
		FC Second floor	BDL	BDL	BDL		
		Petroleum Storage Tanks	BDL	BDL	BDL		
		Unit-2 PB1	BDL	BDL	BDL		
		Unit-2 PB2	BDL	BDL	BDL		
		Unit-2 Scrubber1	BDL	BDL	BDL		
		Unit-2 Scrubber2	BDL	BDL	BDL		
		Unit-2 Intermediate Tank farm	BDL	BDL	BDL		
		Unit-2 Raw material Tank farm	BDL	BDL	BDL		
		Incinerator	BDL	BDL	BDL		
		BDL: Below Detectable Limit Sensitivity of the monitoring inst	rument is	s 1 ppm			
		Complied.					

		Vent c	hillers				
(ii)	Volatile Organic Compounds	Volatile Organic Compounds (Notesting)					
.,	(VOCs) shall be assessed, controlled and monitored in	and monitored in solvent storage areas and reports are submitted to the GPCB/ CPCB and Regional Office of the					
	solvent storage areas along- with other parameters and	Ministry, Bhopal. The summary of results for last	six mo	nthe is a	s below:		
	reports be submitted to the	VOC monitoring in v					
	SPCB/CPCB and Regional	Location	Min.	Max.	Average		
	Office of the Ministry	Niacinamide Ground floor	BDL	BDL	BDL		
		3CP Ground floor	BDL	BDL	BDL		
		Near 3CP Hot Oil Tank	BDL	BDL	BDL		
		3CP Tank Farm	BDL	BDL	BDL		
		FC Ground floor	BDL	BDL	BDL		
		FC Second floor	BDL	BDL	BDL		
		Petroleum Storage Tanks	BDL	BDL	BDL		
		Unit-2 PB1	BDL	BDL	BDL		
		Unit-2 PB2	BDL	BDL	BDL		
		Unit-2 Scrubber1	BDL	BDL	BDL		
		Unit-2 Scrubber2	BDL	BDL	BDL		
		Unit-2 Intermediate Tank farm	BDL	BDL	BDL		
		Unit-2 Raw material Tank farm	BDL	BDL	BDL		
		Incinerator	BDL	BDL	BDL		
		BDL: Below Detectable Limit	trumont	ic 1 nnm			
		Sensitivity of the monitoring inst	ument	is T hhiu			
		Complied.					

(iii)	The scrubber shall be provided to control fugitive emissions in the workplace environment, product, raw material storage	The scrubbers are workplace environareas.										
	areas and regularly monitored.	Fugitive emissio workplace enviro	U U			ed und	er monthly					
		The summary of	results for	last six	months	s is as be	elow:					
		Chlorine (ppm)		Mi	n.	Max.	Average					
		Chlorine tonner Cooling tower	near	B	DL	BDL	BDL					
		Unit-2 PB1		B)L	BDL	BDL					
		Unit-2 PB2		B	DL	BDL	BDL					
		Unit-2 Scrubber		B		BDL	BDL					
		Unit-2 Scrubber	-2	B	DL	BDL	BDL					
		Unit-2 Intermedi Farm area	ate Tank	B	DL	BDL	BDL					
		Unit-2 RM Tank	Farm area	a BE	DL	BDL	BDL					
		Unit-2 Chlorine		B		BDL	BDL					
		UOM is F	PPM, Dete		-	to 0.1 F	PM					
				′ is 0.5 p	pm.							
		Ammonia (ppm)	Min.	Max.		Averag	е					
		Ammonia Tank Farm	BDL	BDL		BDL						
		Fine Chemical Plant Pipe Rack	BDL	BDL		BDL						
		Utility area	BDL	BDL		BDL						
		3CP ground	BDL	BDL		BDL						
		floor UOM is PPM, D	Detection I	imit is ur	to 0.1	PPM. T	LV is					
				i ppm		, .						
		VOC m	nonitoring	in work 4	environ	ment						
		Location	.cr.itoring	Min.	Max.	Aver	age					
		Niacinamide Gro	ound	BDL	BDL	BE						
		3CP Ground floo	or	BDL	BDL	B	DL					
		Near 3CP Hot C	Dil Tank	BDL	BDL	BE	DL					
		3CP Tank Farm		BDL	BDL	BE	DL					
		FC Ground floor		BDL	BDL	BE						
		FC Second floor		BDL	BDL	BE	DL					
		Petroleum Stora Tanks	ige	BDL	BDL	BD						
		Unit-2 PB1		BDL	BDL	BE						
		Unit-2 PB2		BDL	BDL	BD						
		Unit-2 Scrubber	1	BDL	BDL	BE)L					

			OBLIN			
			R			
(iv)	Arrangements shall be made to control and monitor the	Arrangements are mac chemicals. Vent chiller				
	odorous chemicals.	tanks & reaction vessel	s. Odorou	us gaseo	ous stream is	s taken to
		incinerator for incinera monitored under month				
		The summary of results	s for last s	six month	ns is as belo	w:
		Chlorine (ppm)	Min.	Max.	Average	
		Chlorine tonner near Cooling tower	BDL	BDL	BDL	
		Unit-2 PB1	BDL	BDL	BDL	
		Unit-2 PB2	BDL	BDL	BDL	
		Unit-2 Scrubber-1	BDL	BDL	BDL	
		Unit-2 Scrubber-2	BDL	BDL	BDL	
		Unit-2 Intermediate Tank Farm area	BDL	BDL	BDL	
		Unit-2 RM Tank Farm area	BDL	BDL	BDL	
		Unit-2 Chlorine Shed	BDL	BDL	BDL	
		UOM is PPM, Detec	ction limit is 0.5 ppi		0.1 PPM	

Ammonia (ppm)	Min.	Max	x.	Average
Ammonia Tank Farm	BDL	BD	L	BDL
Fine Chemical Plant Pipe Rack	BDL	BD	L	BDL
Utility area	BDL	BD	L	BDL
3CP ground floor	BDL	BD	L	BDL
UOM is PPM, D	etection limit 25 ppm	-	0.1 F	PPMLV is
VOC mor	itoring in wo		onmer	nt
Location		Min.	Max.	Average
Niacinamide Grou	Niacinamide Ground floor			
3CP Ground floor		BDL	BDL	BDL
Near 3CP Hot Oil 1	ank	BDL	BDL	BDL
3CP Tank Farm		BDL	BDL	BDL
FC Ground floor		BDL	BDL	BDL
FC Second floor		BDL	BDL	BDL
Petroleum Storage	Petroleum Storage Tanks			BDL
Unit-2 PB1		BDL	BDL	BDL
Unit-2 PB2		BDL	BDL	BDL
Unit-2 Scrubber1		BDL	BDL	BDL
Unit-2 Scrubber2		BDL	BDL	BDL
Unit-2 Intermedia	te Tank farm	BDL	BDL	BDL
Unit-2 Raw materi	al Tank farm	BDL	BDL	BDL
Incinerator		BDL	BDL	BDL
BDL: Below Detect				
Sensitivity of the r	nonitoring ins	trumen	t is 1 p	pm
Complied.				
	Vent o	hillers	:	
	Vent	initiers		

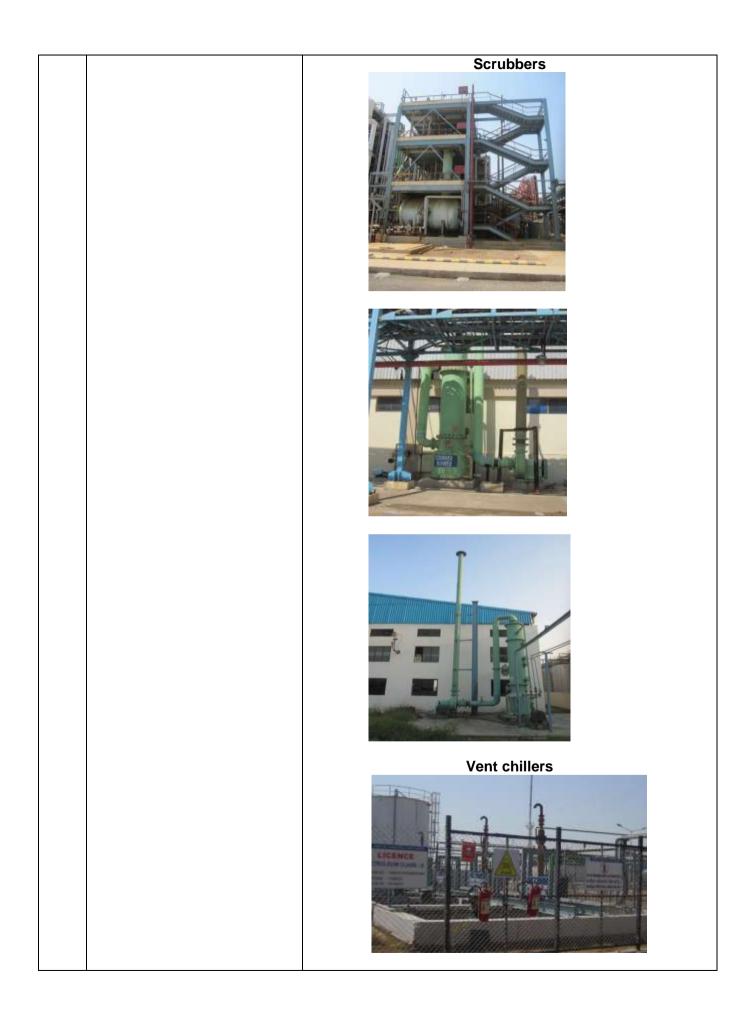
		Incinerator
(v)	The gaseous emissions (SO2, NOx, CO, VOC and HC) and particulate matter along with the RSPM levels from various process units shall confirm to the standards prescribed by the concerned authorities from time to time. At no time, the emission levels shall go beyond the stipulated standards. In the event of failure of pollution control systems(s) adopted by the unit, the respective unit shall not be restarted until the control measures are rectified to achieve the desired efficiency.	The gaseous emissions (SO2, NOx, CO, VOC and HC) and Particulate matter along with RSPM levels from various process units conform to the standards prescribed. Monthly stack monitoring through approved third party is carried out. In the event of failure of pollution control systems(s) adopted by the unit, the respective unit is not restarted until the control measures are rectified to achieve the desired efficiency. The summary of results for last six months is as below: Complied.

		PI	M mg/	/Nm3		NOx ppm		S	02 mg/Nm3		
Stack	N	/lin.	Max.	Average	Min.	Max.	Average	Min.	Max.	Average	
					9.1	14.5	11.22	1.0	1.8	1.34	
Incinerator		12	22	16.8	mg/Nm	mg/Nm	mg/Nm	mg/Nm	mg/Nm	mg/Nm	
					3	3	3	3	3	3	
Steam Boiler (28 TPH		10	16	12 F	20.4	25.5	22.47	10.2	10.2	14.02	
/ 35TPH)	-	10	16	13.5	20.4	25.5	22.47	10.2	18.3	14.83	
Gas Turbine -1		Not	in op	eration	Not	in opera	tion	Not	in opera	tion	
Gas Turbine -2		Not	in op	eration	Not	: in opera	tion	Not	: in opera	tion	
Gas Turbine -3		Not	in op	eration	Not	: in opera	tion	Not	: in opera	tion	
Niacinamide (Unit	-1)	10	15	12	No	t Applica	ble	No	t Applica	ble	
Ammonia Scrubbo for Autoclave Reactor System (U 1)		No	t App	licable	Nc	t Applica	ble	No	t Applica	ble	
Unit-1 Hot Oil un	it	0	0	0	8	13	11	0	0	0	
Unit-2 Hot Oil un	it	0	0	0	10.5	13.8	11.55	0	0	0	
Scrubber-1 of Unit	:-2	No	t App	licable	Nc	t Applica	ble	No	Not Applicat		
Scrubber-2 of Unit	:-2	No	t App	licable	No	t Applica	ble	No	t Applica	ble	
Stack	H	HC mg/Nm3			HCL mg/Ni	n3	CL2 mg	g/Nm3 NH3 m		ng/Nm3	
Slack	N 41									0	
	iviin.	Max	. Aver	age Min.	Max. A	verage I	Vin. Max.	Average	Min. Ma	x. Average	
Incinerator	ıvıın. 2	Max 3	. Aver 2.0		Max. A		Min. Max.			-	
Incinerator Steam Boiler (28 TPH / 35TPH)	2	3		6 N	•	ible		blicable	Not Ap	x. Average	
Steam Boiler (28 TPH	2 No	3 t Apj	2.0	6 N e N	lot Detecta	ble	Not App	blicable	Not Ap Not Ap	x. Average	
Steam Boiler (28 TPH / 35TPH)	2 No ¹	3 t Apj t Apj	2.0 plicabl	6 N e N	lot Detecta	ble	Not App Not App	blicable blicable blicable	Not Ap Not Ap Not Ap	x. Average	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1	2 No ¹ No ¹	3 t Apj t Apj t Apj	2.0 plicabl plicabl	6 N e N e N	lot Detecta lot Applica lot Applica	ble ble	Not App Not App Not App	blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap	x. Average	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2	2 No No No	3 t Apj t Apj t Apj t Apj	2.0 plicabl plicabl plicabl	6 N e N e N e N	lot Detecta lot Applica lot Applica lot Applica	ble ble ble ble	Not App Not App Not App Not App	blicable blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap Not Ap	x. Average oplicable oplicable oplicable oplicable	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3	2 No ¹ No ¹ No ¹	3 t Apı t Apı t Apı t Apı t Apı	2.0 plicabl plicabl plicabl plicabl	6 N e N e N e N	lot Detecta lot Applica lot Applica lot Applica lot Applica	ble ble ble ble ble	Not App Not App Not App Not App Not App	blicable blicable blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap Not Ap	x. Average oplicable oplicable oplicable oplicable oplicable	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit-	2 No ¹ No ¹ No ¹	3 t Apı t Apı t Apı t Apı t Apı	2.0 plicabl plicabl plicabl plicabl	6 N e N e N e N e N	lot Detecta lot Applica lot Applica lot Applica lot Applica lot Applica	ble ble ble ble ble ble ble	Not App Not App Not App Not App Not App Not App	blicable blicable blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap Not Ap Not Ap 1.2 2.5	x. Average oplicable oplicable oplicable oplicable oplicable	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit- 1)	2 No ⁻ No ⁻ No ⁻ No ⁻	3 t App t App t App t App t App t App	2.0 plicabl plicabl plicabl plicabl plicabl	6 N e N e N e N e N e N	lot Detecta lot Applica lot Applica lot Applica lot Applica lot Applica	ble	Not App Not App Not App Not App Not App Not App	blicable blicable blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap Not Ap 1.2 2.5 Not Ap	x. Averag oplicable oplicable oplicable oplicable oplicable oplicable 5 1.96	
Steam Boiler (28 TPH / 35TPH) Gas Turbine -1 Gas Turbine -2 Gas Turbine -3 Niacinamide (Unit-1) Ammonia Scrubber for Autoclave Reactor System (Unit- 1) Unit-1 Hot Oil unit	2 No ¹ No ¹ No ¹ No ¹ No ¹ No ¹	3 t App t App t App t App t App t App t App	2.0 plicabl plicabl plicabl plicabl plicabl		lot Detecta lot Applica lot Applica lot Applica lot Applica lot Applica	ble ble ble ble ble ble ble ble ble ble	Not App Not App Not App Not App Not App Not App Not App	blicable blicable blicable blicable blicable blicable blicable blicable blicable blicable blicable	Not Ap Not Ap Not Ap Not Ap Not Ap 1.2 2.5 Not Ap Not Ap	x. Average oplicable oplicable oplicable oplicable oplicable oplicable	

Sr. No.	Stack attached to		Parameter	Permissible Limit
1	Boilers, Gas Turbines		Particulate matter SO ₂	100 mg/NM ³ 100 ppm
2	Hot oil units,		NOx Particulate matter SO ₂ NO _x	50 ppm 100 mg/NM ³ 100 ppm 50 ppm
3	Incinerator		Particulate matter SO ₂ NO _x HCI HC	50 mg/NM ³ 200 mg/NM ³ 400 mg/NM ³ 20 mg/NM ³ 15 mg/NM ³
4	Emergency 410 KVA DG S		Particulate matter SO ₂ NO _x	150 mg/NM ³ 100 ppm 50 ppm
5	Niacinamide Spray Dryer V Ammonia Scrubber	ent	Particulate matter Ammonia	150 mg/NM3 175 mg/NM3
toxic/ waste	All the solid/hazardous waste including ETP sludge shall be sent to treatment, storage and disposal facility (TSDF). The toxic/hazardous solid and liquid waste shall be incinerated in incinerator.	The toxic/ ha incinerator. N in the Incine operator. All to GPCB aut M/s Bharuch	Non-biodegradable erator installed an other Solid and liqu horized common c Enviro Infrastructu nviro Projects Pvt.	liquid waste are incinerated in liquid wastes are incinerated ad operated by the JIL-SEZ id Hazardous wastes are sent disposal facility for disposal of ure Ltd. at Ankleshwar & M/s Ltd. at Kutch.
			Incine	

		BHARUCH ENVIRO INFRASTRUCTURE LIMITED Date 2504 293
		To, Jubilant Infrastructure Ltd. (Sez) Plot No.5, Vilayat GIDC, Tal: Vagra, Dist: Bharuch.
		Sub : Membership Certificate for Common Solid Waste Disposal <u>Pacility</u> . Dear Sir,
		We hereby certify that you have become member for the common Solid/Hazardous waste disposal facility of Bharuch Enviro Infrastructure Ltd., at GIDC, Ankieshwar. You have booked solid waste quantity of <u>40 MT/year</u> . You have also paid your capacity commitment charges. Your Membership No. is Oth/331 .
		Waste will be accepted after submitting valid authorization of GPCB. Thanking you,
		Yours faithfully, For BHARUCH ENVIRO INFRASTRUCTURE LTD.
		AUTHORISED SIGNATORY
(vii)	Liquid effluent emanating from different units will be treated to confirm to the prescribed standards before discharging to common conveyance	Liquid effluent emanating from different units within SEZ is treated in Common ETP to conform to the prescribed standards and discharged to common conveyance channel of GIDC.
	channel which will be connected to the ETP.	Monthly monitoring through approved third party is carried out.
		The summary of results of treated effluent analysis for last six months is as below:

Parameters	Unit	Min.		Average
рН		7.15	8	7.59
Temperature	°C	27	32	28.33
Color	Pt.Co.	5	15	9.67
Suspended Solid	mg/L	8	15	11.83
Oil & Grease	mg/L	ND	ND	ND
Phenolic Compound	mg/L	ND	ND	ND
Ammonical Nitrogen	mg/L	8.5	30.2	17.46
BOD (3 days 27 °C)	mg/L	40	65	47.5
COD	mg/L	135	208	170.33
Sulphides	mg/L	0.04	0.08	0.05
Copper	mg/L	0.11	0.14	0.12
Lead	mg/L	NIL	NIL	NIL
Mercury	mg/L	NIL	NIL	NIL
Total Chromium	mg/L	0.13	0.16	0.14
Hexavelent Chromium	mg/L	0.070	0.09	0.08
Nickle	mg/L	0.04	0.07	0.06
Zinc	mg/L	ND	ND	ND
Cadmium	mg/L	ND	ND	ND
Cyanide	mg/L	NIL	NIL	NIL
Arsenic	mg/L	ND	ND	ND
Fluorides	mg/L	0.03	0.12	0.06
Insecticides / Pesticides	mg/L	NIL	NIL	NIL
Selenium	mg/L	NIL	NIL	NIL
Boron	mg/L	NIL	NIL	NIL
Bio Assey Test	%	95	95	95
· · · · · · · · · · · · · · · · · · ·	•	-	•	· · · · · · · · · · · · · · · · · · ·


Online monitoring of pH, Ammonical Nitrogen, COD, BOD and TSS are done before discharge to common conveyance channel.

Complied.

(viii)	Adequate measures will be taken to control fugitive emissions from the industries in SEZ.	Adequate measures from the industries provided. Work place plant area for amo presence of pollutan chlorine & VOC. A party. The summary of res	in S ce me nonia its & mbie	SEZ. S onitorin a, chlor through ent mor	crubbers a g is done ine & VO online mo nitoring is	& vent chillers at 22 places in C based on li nitors for ammo done through t	are the ikely onia,
		Chlorine (ppm)		Min.	Max.	Average	
		Chlorine tonner nea Cooling tower	ar	BDL	BDL	BDL	
		Unit-2 PB1		BDL	BDL	BDL	
		Unit-2 PB2		BDL	BDL	BDL	
		Unit-2 Scrubber-1		BDL	BDL	BDL	
		Unit-2 Scrubber-2		BDL	BDL	BDL	
		Unit-2 Intermediate Tank Farm area	;	BDL	BDL	BDL	
		Unit-2 RM Tank Fa area		BDL	BDL	BDL	
		Unit-2 Chlorine She		BDL	BDL	BDL	
		UOM is PPM, De		ion limi s 0.5 pp		.1 PPM,	
		Ammonia (ppm)	N	1in.	Max.	Average	
		Ammonia Tank Farm	В	BDL	BDL	BDL	
		Fine Chemical Plant Pipe Rack	В	BDL	BDL	BDL	
		Utility area	В	BDL	BDL	BDL	
		3CP ground floor		BDL	BDL	BDL	
		UOM is PPM, D				.1 PPM,	
			ΓLV	is 25 pp	om		

	VOC monitoring in work environment									
Locatio	on				Min		Max.	A۱	/erage	
Niacin	amid	le Gro	ound floo	or	BDL		BDL		BDL	
3CP Gr	round	d floc	or		BDL		BDL		BDL	
Near 3	вср н	lot Oi	l Tank		BDL		BDL		BDL	
3CP Ta	ank Fa	arm			BDL		BDL		BDL	
FC Gro	ound	floor			BDL		BDL		BDL	
FC Sec	ond f	floor			BDL		BDL		BDL	
Petrole	eum	Stora	ige Tank	s	BDL		BDL		BDL	
Unit-2	Unit-2 PB1				BDL	L BDL			BDL	
Unit-2	Unit-2 PB2				BDL	-	BDL		BDL	
Unit-2	Unit-2 Scrubber1 Unit-2 Scrubber2 Unit-2 Intermediate Tank farm Unit-2 Raw material Tank farm				BDL		BDL BDL BDL BDL BDL		BDL	
Unit-2					BDL				BDL	
				k	BDL		BDL		BDL	
				k	BDL		BDL		BDL	
Inciner	Incinerator				BDL		BDL		BDL	
			ectable L							
Sensiti	Sensitivity of the monitoring				nstrur	ment is	1 ppm			
Ambien	Ambient air quality monitorin									
	1		ation-1			tion-2				
			Average			_			Averag	
PM2.5 2 PM10 4			21.87 48.15		25.8 51.5	23.27 49.02	24.1 48.5	30.5 55.3	26.38 52.05	
	+3.5 10.2		10.95		12.5	4 <u>9.02</u> 11.57	11.2	12.5	11.95	
		20.5	18.63	17.3		20.43	19.3	22.5	20.52	
	1.2	1.8	1.44	0.8	1.2	0.92	0.7	2.5	1.33	
СО		105	90.83	70		103.00		125	116.67	
Sr.		I	Pollutant				Veighted	Per	missible	
No.	Sulr	nhur	Dioxide (S	<u></u>	g/		erage nual		limit 50	
	Տակ		m ³	,σ ₂ ,, μ	·6/		Hours		80	
2.	Nitro	ogen	Dioxide (I	NO2),	ug/	An	nual		40	
			m ³				lours	_	80	
3.	 Particulate Matter (Size less than 10 μm) PM₁₀ μg/ m³ 				R		nual Iours		60 100	
						271			100	
4.	Parti	iculat	e Matter	(Size I	ess	Δn	nual		40	
			5 μm) OR	-			Hours		60	
			µg/m³							
	5. Carbon Monoxide (le (CO)		ours		02	
5.	Ca	mg/m ³			1			04		
		mmo		110/m ³	3		Hour			
5.		mmoi	mg/m³ nia (NH₃)	μg/m ³	3	An	nual Nual Hours		04 100 400	

Ammonia detectors

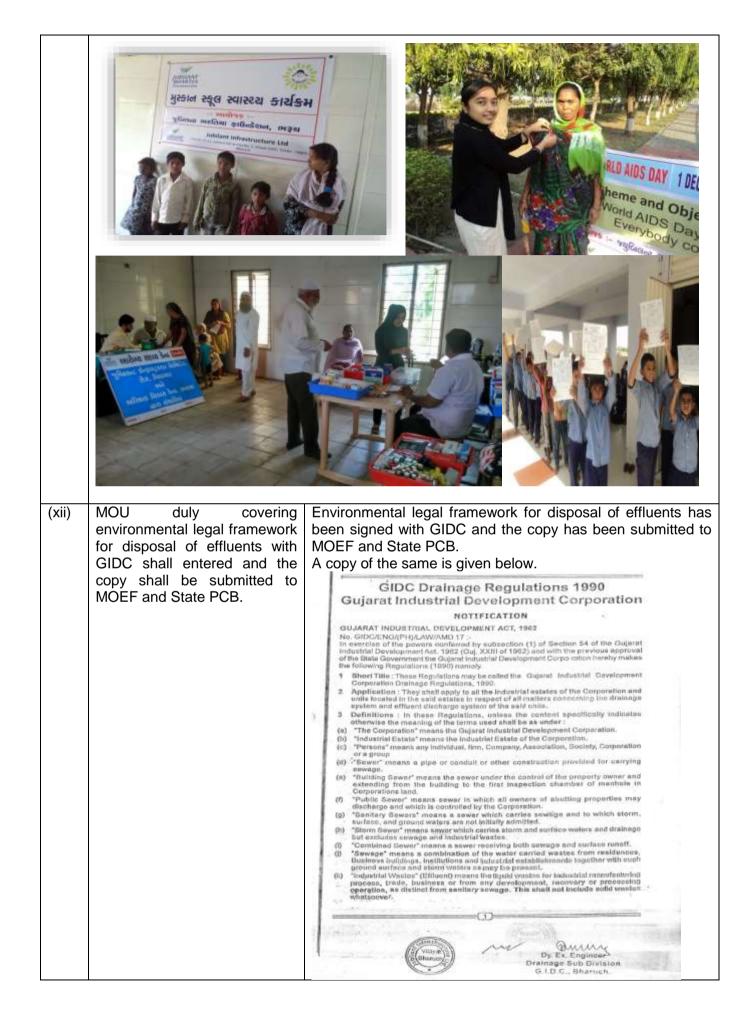
Chlorine detectors

		VOC analyzer
(1)		
(ix)	Internal road widths within the SEZ be minimum 24 m ROW.	Internal road widths within the SEZ are as per approved layout plan of SEZ by competent authorities of Govt. of Gujarat.

		UT/US/2015
(x)	Common facilities such as repair shops, rest rooms for drivers and attendants.	<image/>

(xi)	2% of the pro earmarked for C			for th	ne CSR activi	ty and the same s CSR activities	-SEZ project is ea has been approp that are ongoing i	riately
				deve com deve Envii awar segro Furth neigh facilit awar on a	lopment mea munity. Some lopment, Cor ronmental ed reness progra egation and con ner, Commun nboring villag ty, vocational reness progra regular basis	e of the activities nmunity tree plan ucation to schoo im on water cons organic waste con ity Welfare meas es including mea trainings, childre ims and camps,	taken in the neigh includes green be ntation programs, I children, Commu- servation, waste mposting. sures are undertal lical camps, Drink en education & he Infrastructure dev	elt unity ken in the king water ealth
	CS	R activit		, e	•	uring July to D		
	Month	Health Care	Educa	-	Livelihood	Trust Building Activities	Administrative Expenses	Total
	July'2018	183460	878	333	7500	0	7500	286293
	August'18	183960	878		0	10000	3500	285293
	September'18	186960	139		15000	29000	38500	269460
	October'18	182960	978		0	10000	3500	294293
	November'18	182960	879	933	0	0	7500	278393
	December'18	199260	879	933	0	30000	28500	345693
	Total							1759425

Sr. No	Education	Health	Lively Hood	Rural development OR Trust building	Employees Engagements
1	Monthly meeting with CRC	OPD Mobile health services established and running effectively In 13 Villages covering with 15000 community people and 2500 Muskaan students	program at four Muskaan school HP	· ,	Swachhata Hi Seva , Plantat Programme on world Environment Day accomplished by the Unit Head , HOD's and all employees
2	Parents Teachers Meeting	Arranging yearly Blood Donation camp for our employees	Agriculture demonstration on wormi compost Farmer's field preparation for organic & cash crops.	Cement Benches for five villages	Unit Head Participated In annual Day celebration & H head and PRO participated Muskaan activities
3	Birth day Celebration & Muskaan children's Bank	Health service for Malnourishment & organizing counselling meeting on Mamta divas (Immunization day)is going on .	Discussion held with AVP CSR for Training on Tailoring .and support for garment making to the needy SHG	Community Park maintained & R.O filter Plant maintenance and support for water distribution at Vilayat	Contributions for Birth day Books and Planning Has be made for participation in Muskaan activities
4	Muskaan Regular Monthly Activities Sports ,Science exhibition ,	AID's Day celebrated in1st Dec'18	all village youth of two villages Kolauna &	Planning held for Caram & Cricket tournamentat Vilayat & Tracksuit distribution for Muskaan KHOKHO & Yoga team	Yearly Blood donation Carr planned for February 201

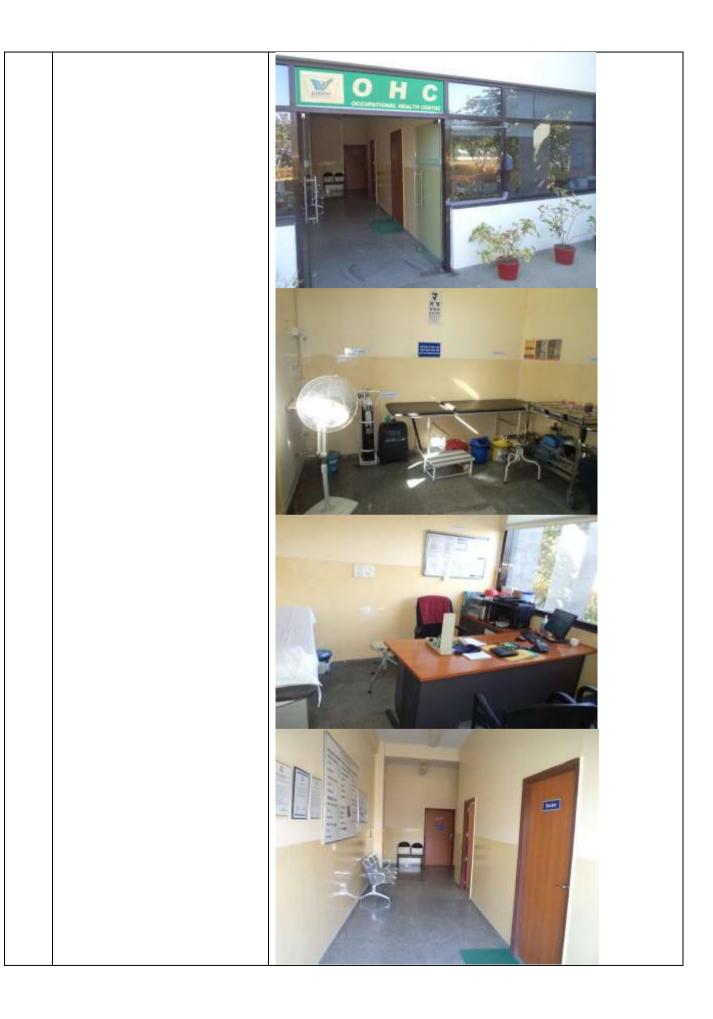


CSR ACTIVITIES BHARUCH 2018

(xiii)	Proper meters with recording facility shall be provided to monitor the effluent sent from the member industries to CETP and from CETP to the final effluent pipeline of GIDC on daily basis.	Complied. Proper meters w provided to monitor the ef- industries to CETP and from C of GIDC on daily basis. discharged to the GIDC pipeli 1000 KLD and the quality of the stipulated standards.	fluent s CETP to The tota ine is withe treat	sent fro the fina al quar thin the ed efflu	om the al efflue ntity of appro- lents c	e member ent pipeline f effluents ved limit of omply with
(xiv)	Member industries shall treat the effluent to meet the CETP inlet norms stipulated under EP Act provisions.	Effluents from various units v ETP and discharged to comm after meeting the norms monitoring through approved The summary of results of tre	on conv specifie third pa	eyance d by rty is ca	chann GPCB arried o	el of GIDC . Monthly out.
		months is as below:		1	1	· · · · · · · · · · · · · · · · · · ·
		Parameters	Unit	Min.		Average
		рН		7.15	8	7.59
		Temperature	°C	27	32	28.33
		Color	Pt.Co.	5	15	9.67
		Suspended Solid	mg/L	8	15	11.83
		Oil & Grease	mg/L	ND	ND	ND
		Phenolic Compound	mg/L	ND	ND	ND
		Ammonical Nitrogen	mg/L	8.5	30.2	17.46
		BOD (3 days 27 °C)	mg/L	40	65	47.5
		COD	mg/L	135	208	170.33
		Sulphides	mg/L	0.04	0.08	0.05
		Copper	mg/L	0.11	0.14	0.12
		Lead	mg/L	NIL	NIL	NIL
		Mercury	mg/L	NIL	NIL	NIL
		Total Chromium	mg/L	0.13	0.16	0.14
		Hexavelent Chromium	mg/L	0.070	0.09	0.08
		Nickle	mg/L	0.04	0.07	0.06
		Zinc	mg/L	ND	ND	ND
		Cadmium	mg/L	ND	ND	ND
		Cyanide	mg/L	NIL	NIL	NIL
		Arsenic	mg/L	ND	ND	ND
		Fluorides	mg/L	0.03	0.12	0.06
		Insecticides / Pesticides	mg/L	NIL	NIL	NIL
		Selenium	mg/L	NIL	NIL	NIL
		Boron	mg/L	NIL	NIL	NIL
		Bio Assey Test	%	95	95	95
		Complied.				
		c	ETP			

(xv)	Provisions shall be made to reuse MEE condensate as committed by PP. Suitable metering for measurement of the quantity of reuse shall be provided	MEE condensate is being utilized in the manufacturing process & is reused to the maximum extent. Metering for measurement of the quantity of reuse is provided and monitored daily.
(xvi)	A greenbelt of minimum width of 20 m shall be developed all around the project.	The open spaces inside the SEZ is landscaped and covered with vegetation of indigenous variety. 26 acres of area along the periphery of the SEZ is developed into green belt. Till date, 11094 nos. of plants on the periphery & inside area are planted giving priority to local plant species such as Shirish, Neem, Gulmohar, Amaltash, Jamun, Saptaparni, Jacaranda, Peltoforum, Palash, Teak etc.
		Further, large areas of landscaping with lawns and exotic species are planted creating green islands in and around the manufacturing plant, administration building, Utility areas, Canteen and Fire stations, Customs control office, along the road sides, plant offices, etc. An area of >15 acres of landscaping with green lawn and plantation are created till date in addition to the green belt development with large tree species.
		Details are as below:

Gulmohar (Delonix Regia/ Poinciana Regia)2380Bauhinia black (Orchid tree)300Azardirachtaindica (Neem)1640Amaltash (Cassia Fistula)570Jamun525Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda1655Fern tree75Peltoforum1350Palash660Teak450Palm tree1800Champa (Plumeria)1500Saru (Casuarina)2855Bengali Baval (Babul)2900Thespasiapopulea (Paras Pipal)1800Fycus500Polyalthia pendula (Pendula asopalv - Ashoka)1600Badam1000Coconut tree (Cocos nucifera)500Borsali240TOTAL1109	Ilmohar (Delonix Regia/ Poinciana Regia) 23 uhinia black (Orchid tree) 3 ardirachtaindica (Neem) 14 naltash (Cassia Fistula) 5 mun 55 stoniascholaris (Saptaparni) 7 in Tree (Shirish) 7 ue Jacaranda 1 rn tree 1 Itoforum 11 lash 66 ak 44 Im tree 1 nampa (Plumeria) 1 ru (Casuarina) 2 espasiapopulea (Paras Pipal) 1 cus 1 uyalthia pendula (Pendula asopalv - Ashoka) 1 dam 1 oronut tree (Cocos nucifera) 1 orsali 1 onocarpus 1		ils
Bauhinia black (Orchid tree)300Azardirachtaindica (Neem)1644Amaltash (Cassia Fistula)570Jamun525Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda165Fern tree75Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Cococarpus50TOTAL1109	uhinia black (Orchid tree)3ardirachtaindica (Neem)10naltash (Cassia Fistula)55mun55stoniascholaris (Saptaparni)77in Tree (Shirish)77ue Jacaranda11rn tree12Itoforum13lash66ak44Im tree11ampa (Plumeria)11ru (Casuarina)22espasiapopulea (Paras Pipal)11cus12ulyalthia pendula (Pendula asopalv - Ashoka)11dam1conut tree (Cocos nucifera)12orsali23mocarpus14TOTAL11		Qty. (No
Azardirachtaindica (Neem)1644Amaltash (Cassia Fistula)570Jamun525Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda165Fern tree75Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	ardirachtaindica (Neem)11naltash (Cassia Fistula)5mun5stoniascholaris (Saptaparni)7in Tree (Shirish)7ue Jacaranda1rn tree1ltoforum13lash6ak44Im tree1iampa (Plumeria)1ru (Casuarina)2ngali Baval (Babul)2espasiapopulea (Paras Pipal)1cus9lyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)9orsali2mocarpus9TOTALTOTAL		2380
Amaltash (Cassia Fistula)570Jamun525Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda165Fern tree75Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTALTOTAL	naltash (Cassia Fistula)5mun5stoniascholaris (Saptaparni)7in Tree (Shirish)7ue Jacaranda1rn tree1ltoforum1lash6ak4Im tree1iampa (Plumeria)1ru (Casuarina)2espasiapopulea (Paras Pipal)1cus1lyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)1mocarpus1TOTAL11		
Jamun525Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda165Fern tree75Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam1000Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	mun5stoniascholaris (Saptaparni)7in Tree (Shirish)7ue Jacaranda1rn tree1Itoforum11Iash6ak4Im tree1aampa (Plumeria)1ru (Casuarina)2espasiapopulea (Paras Pipal)1cus1dam1dam1conut tree (Cocos nucifera)1procarpus1trotAL11		1640
Alstoniascholaris (Saptaparni)730Rain Tree (Shirish)730Blue Jacaranda165Fern tree75Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	stoniascholaris (Saptaparni)7in Tree (Shirish)7ue Jacaranda1rn tree1Itoforum11lash6ak4Im tree1nampa (Plumeria)1ru (Casuarina)2espasiapopulea (Paras Pipal)1cus1lyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)2rrsali2mocarpus2TOTAL11		
Jain Tree (Shirish)730Silue Jacaranda165ern tree75reltoforum1350ralash660reak450ralm tree180champa (Plumeria)150aru (Casuarina)285sengali Baval (Babul)290rhespasiapopulea (Paras Pipal)180ycus50rolyalthia pendula (Pendula asopalv - Ashoka)160conocarpus50TOTAL1105	in Tree (Shirish)7ue Jacaranda1rn tree1Itoforum11lash6ak4Im tree1nampa (Plumeria)1ru (Casuarina)2espasiapopulea (Paras Pipal)1cus1lyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)1orsali2Inocarpus1Inocar		
lue Jacaranda165ern tree75eltoforum1350alash660eak450alm tree180hampa (Plumeria)150aru (Casuarina)285engali Baval (Babul)290hespasiapopulea (Paras Pipal)180ycus50olyalthia pendula (Pendula asopalv - Ashoka)160adam100oconut tree (Cocos nucifera)50orsali24onocarpus50TOTAL	ue Jacaranda1rn tree1In tree1Iash6ak4Im tree1Iampa (Plumeria)1ru (Casuarina)2Ingali Baval (Babul)2espasiapopulea (Paras Pipal)1cus9Ilyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)9prsali2Inocarpus9Inoc		
ern tree 75 reltoforum 1350 ralash 660 reak 660 reak 450 ralm tree 180 champa (Plumeria) 150 aru (Casuarina) 285 rengali Baval (Babul) 290 hespasiapopulea (Paras Pipal) 180 ycus 50 rolyalthia pendula (Pendula asopalv - Ashoka) 160 radam 100 coconut tree (Cocos nucifera) 50 rorsali 24 conocarpus 50	rn tree 11 Itoforum 11 Iash 6 ak 6 ak 4 Im tree 11 Iampa (Plumeria) 11 ru (Casuarina) 22 Ingali Baval (Babul) 22 espasiapopulea (Paras Pipal) 11 cus 12 Ilyalthia pendula (Pendula asopalv - Ashoka) 11 dam 11 coonut tree (Cocos nucifera) 12 Inocarpus 12 TOTAL 11		
Peltoforum1350Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1105	Itoforum11lash6ak4Im tree1ampa (Plumeria)1ru (Casuarina)2espasiapopulea (Babul)2espasiapopulea (Paras Pipal)1cus9ilyalthia pendula (Pendula asopalv - Ashoka)1dam1oconut tree (Cocos nucifera)9inocarpus9TOTAL11		
Palash660Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	lash6ak4Im tree1nampa (Plumeria)1ru (Casuarina)2ingali Baval (Babul)2espasiapopulea (Paras Pipal)1cus1lyalthia pendula (Pendula asopalv - Ashoka)1dam1iconut tree (Cocos nucifera)1irsali1inocarpus1total1inocarpus1inocarp		
Teak450Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL	ak4Im tree1Iampa (Plumeria)1ru (Casuarina)2Ingali Baval (Babul)2espasiapopulea (Paras Pipal)1cus1ulyalthia pendula (Pendula asopalv - Ashoka)1dam1oconut tree (Cocos nucifera)1onocarpus1TOTAL11		
Palm tree180Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL	Im tree1nampa (Plumeria)1ru (Casuarina)2espasiapopulea (Babul)2espasiapopulea (Paras Pipal)1cus9ilyalthia pendula (Pendula asopalv - Ashoka)1dam1oconut tree (Cocos nucifera)9orsali2inocarpus9TOTAL11		
Champa (Plumeria)150Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	ampa (Plumeria)1ru (Casuarina)2rngali Baval (Babul)2espasiapopulea (Paras Pipal)1cus9rlyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)9orsali2Inocarpus9TOTAL11		
Saru (Casuarina)285Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL	ru (Casuarina)2ngali Baval (Babul)2espasiapopulea (Paras Pipal)1cus1dugathia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)1orsali1mocarpus1TOTAL11		
Bengali Baval (Babul)290Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	ngali Baval (Babul)2espasiapopulea (Paras Pipal)1cus1lyalthia pendula (Pendula asopalv - Ashoka)1dam1oconut tree (Cocos nucifera)1orsali1mocarpus1TOTAL11		
Thespasiapopulea (Paras Pipal)180Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	espasiapopulea (Paras Pipal) 1 cus 1 Ilyalthia pendula (Pendula asopalv - Ashoka) 1 dam 1 foconut tree (Cocos nucifera) 1 insali 1 Innocarpus 1 TOTAL 11		
Fycus50Polyalthia pendula (Pendula asopalv - Ashoka)160Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	cus9Ilyalthia pendula (Pendula asopalv - Ashoka)1dam1conut tree (Cocos nucifera)9orsali2onocarpus9TOTAL		
Polyalthia pendula (Pendula asopalv - Ashoka) 160 Badam 100 Coconut tree (Cocos nucifera) 50 Borsali 24 Conocarpus 50 TOTAL 1109	Ilyalthia pendula (Pendula asopalv - Ashoka) 1 dam 1 conut tree (Cocos nucifera) 9 orsali 2 nocarpus 9 TOTAL 11		
Badam100Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	dam1iconut tree (Cocos nucifera)1irsali1inocarpus1TOTAL11		
Coconut tree (Cocos nucifera)50Borsali24Conocarpus50TOTAL1109	rconut tree (Cocos nucifera)		160
Borsali 24 Conocarpus 50 TOTAL 1109	rsali 2 nocarpus 1 TOTAL 11		100
Conocarpus 50 TOTAL 1109	TOTAL 11		50
TOTAL 1109	TOTAL 11		24
		Conocarnus	F.0
		conocalpus	50
	<image/>		
		TOTAL	
	The main is a state of the stat	TOTAL	
		TOTAL	
		TOTAL	



(xvii)	Solar lighting in the non- process area shall be provided.	Installed solar lighting of 10 KW capacity in non-process area and further 50 KW capacity installation scheme is ready & under approval.
(xviii)	Parking space to accommodate 300 trucks, 150 cars, 200 two wheelers and 400 bicycles shall be provided	Adequate parking space to accommodate 300 trucks, 150 cars, 200 two wheelers and 400 bicycles is provided in the SEZ at main gate to prevent use of public space.

	as presented by the project	Parking area
	proponent	
(xix)	Online monitoring system shall be provided at the outlet of ETP for critical parameters in consultation with SPCB.	Online monitoring systems for COD, BOD, TSS, Ammonical Nitrogen, flow & pH are provided at the outlet of ETP for critical parameters meeting requirements of SPCB. Complied.
		<image/>

		Online Flow meter
		Online Prow meter
		FINAL OUTLET PH METER
		Data Recorder
(xx)	Continuous VOC monitors at SEZ periphery at three locations shall be provided in consultation with SPCB:	Continuous VOC monitors are provided at SEZ periphery at three locations

(xxi)	"Consent for Establishment" shall be obtained from Gujarat State Pollution Control Board under Air and Water Act and a copy shall be submitted to the Ministry before start of any construction work at the site.	"Consent for Establishment" was obtained from Gujarat State Pollution Control Board under Air and Water Act before start of project work at the site. On completion of the construction, GPCB has granted Consent to Operate to the facility.
(xxii)	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	Necessary infrastructure facilities are provided in the housing of construction labors at the time of construction phase. The housing was in the form of temporary structures & had been removed after the completion of the project. Presently, there are no labors residing within the SEZ complex.
(xxiii)	A First Aid Room will be provided in the project both during construction and operation of the project.	Occupational health Centre has been established in the SEZ with FMO, round the clock male nurse & ambulance. Complied.

		<image/>
(xxiv)	All the topsoil excavated during construction activities should be stored for use in horticulture /landscape development within the project site.	All the topsoil excavated during construction activities was stored & used in horticulture/landscape development within the project site.
(xxv)	Disposal of muck during construction phase should not create any adverse effect on the neighboring communities and be disposed taking the necessary precautions for general safety and health aspects of people, only in approved sites with the approval of competent authority.	Complied. The Project was a green field project and Hence, no such construction muck was generated. However, adequate care is taken during any construction activity.to dispose the muck inside the premises for leveling low lying area without creating any adverse effect on the neighboring communities. Suitable precautions are taken for general safety and health aspects of people.

(xxvi)	Soil and ground water samples will be tested to ascertain that there is no threat to ground water quality by leaching of	Periodically the Soil and ground water samples are tested to ascertain that there is no threat to ground water quality by leaching of heavy metals and other toxic contaminants.									
	heavy metals and other toxic	Complied. Analysis report is as below:									
	contaminants.	Soil Quality									
		Par	it	Res	sult						
		Electric Co	m	s	9.	.8					
					8.12						
		N	%		0.5	56					
		Ph	%		1.81						
		Po	tass	sium			%		0.06		
		Su	ılph	ate			%		3.8		
		C	hlor	ide			%		2.3		
		Sodium Adso	rpti	ion R	atio (SAR)		-	2.	.7	
		Bull	k De	ensity	/		w/	ν.	0.52		
		Water ho	ml/mg		1.2						
		Т	ext	ure				-	Cla	ay	
		Sand Co	nte	nt of	Soil		%		3.0	05	
		Silt Co	nter	nt of :	Soil		%		12.8		
		Clay Co	%		50.3						
		· · · · ·									
		Parameters	Unit	Ground	Water Qua Po	ost Monsoor	n October 20)18			
				Peizowell-		Peizowell-			vell-	Vilayat	
		Tacto		1 Agroophio	2	3 Agreeable	4	6		Village	
		Taste Color	pt.co.	Agreeable 4	Agreeable 5	Agreeable 5	Agreeable 8	Agreea 8		greeable 6	
		Odor		1		Agreeable	1				
		pH Turbidity	 NTU	8.31 1	7.94 2	8.14 2	7.28	7.34		7.84 2	
		Total Dissolved Solids	mg/L	615.5	598	946	2993	190		855	
		Suspended Solids	mg/L	12	10	14	13	11		10	
		Conductivity Calcium (as Ca)	ms/cm mg/L	1515 156.5	1108.3 148.2	1654.6 171.1	577.6 395	3595 260		1354 185	
		Chloride (as Cl)	mg/L	235.5	140.2	171.1	1726.6	200		385	
		Copper (as Cu)	mg/L	0.78	0.22	0.08	0.06	0.2		0.12	
		Fluorides (as F) Free residual chlorine	mg/L mg/L	0.57 Nil	0.62 Nil	1.02 Nil	0.38 Nil	0.4 Nil		0.06 Nil	
		Iron (as Fe)	mg/L	0.077	0.051	0.022	0.098	0.06		0.055	
		Mineral Oil	mg/L	Nil	Nil	Nil	Nil	Nil		Nil	
		Magnesium (as Mg) Manganese (as Mn)	mg/L mg/L	16.8 0.01	12.1 N.D.	78.4 0.03	90.8 0.04	22.: N.D		28.7 N.D.	
		Nitrate (as NO3)	mg/L	25.5	15.3	17.3	65.5	17.2		18.3	
		Phenolic compounds (as C6H5OH	-	0.02	N.D.	0.03	0.04	N.D 212		N.D. 24	
		Sulphate (as SO4) Total alkalinity (as CaCO3)	mg/L mg/L	22 260	15 420	164 450	180 400	400		380	
		Total hardness (as CaCO3)	mg/L	460	420	750	1360	740		580	
		Sodium (as Na) Potassium (as K)	mg/L	321.4 3.5	276.5 3.5	141.4 3.6	560.3 4.6	348. 4.1		365 2.8	
		Lead (as Pb)	mg/L mg/L	3.5 0.07	3.5 0.04	0.03	4.6 0.61	4.1		2.8 0.05	
		Cadmium	mg/L	N.D.	N.D.	N.D.	N.D.	N.D).	N.D.	
		Chromium Zinc (as Zn)	mg/L	0.04	0.041	0.044	0.505 N D	0.04		0.032	
		Zinc (as Zn) Dissolve Oxygen	mg/L mg/L	N.D. 5.1	N.D. 58	N.D. 5.5	N.D. 5.3	N.D 5.5		N.D. 6.1	
		Biochemical Oxygen Demand	mg/L	6.5	NIL	3.5	3	3.5	5	NIL	
		Chemical Oxygen Demand Total Coliforms	mg/L Counts	22 Absent	NIL Absent	10 Absent	10 Absent	15 Abse		NIL Absent	
		Fecal Coliforms	/100ml Counts /100ml	Absent	Absent	Absent	Absent	Abse		Absent	

<u> </u>									
(xxvii)	Construction spoils, including bituminous material and other hazardous materials, must not be allowed to contaminate watercourses and the dump sites for such material must be secured so that they should not leach into the ground water.	Construction spoils, including bituminous material and other hazardous materials, were stored & handled properly & not allowed to contaminate watercourses so that they do not leach into the ground water. During the operation phase, all such hazardous wastes are safely stored in designated places and disposed off to authorized 3 rd party TSDF as per the HWM rules.							
(xxvii i)	Any hazardous waste generated during construction phase, should be disposed off as per applicable rules and norms with necessary approvals of the Gujarat State Pollution Control Board.	No hazardous wastes are generated during construction phase. Membership of authorized disposal agency is taken for disposal of hazardous wastes, if any will be generated during construction work in future and operation phase.							
(xxix)	The diesel generator sets to be used during construction phase should be low Sulphur diesel type and should conform to Environment (Protection) Rules prescribed for air and noise emission standards.	Complied during the construction phase and dismantled thereafter.							
(xxx)	The diesel required for operating DG sets shall be stored in underground tanks and if required, clearance from Chief Controller of Explosives shall be taken.	The diesel stored for DG sets are below the threshold quantity for seeking approval from CCOE (PESO) and hence not applicable. Due to small quantity of usage, no underground storage constructed.							
(xxxi)	Vehicles hired for bringing construction material to the site should be in good condition and should have a pollution check certificate and should conform to applicable air and noise emission standards and should be operated only during non-peak hours.	We have a checklist for vehicle entering the site to ensure that they are of good condition & have PUC certificate to conform to applicable air and noise emission standards.							
(xxxii Ambient noise levels should conform to residential standards both during day and night. Incremental pollution loads on the ambient air and noise quality should be closely monitored during construction phase. Adequate measures should be made to reduce ambient air and noise level during construction phase, so						e in pollu nonitored equate pise lev	tion loads d. Though measures rel during		
	as to conform to the stipulated standards by CPCB/ GSPCB.	Noise dB	Min.	Day time Max.	Average	Min.	Night tim Max.	e Average	
	stanuarus by UFUD/ GOFUD.	Location-1	67.1	68.2	67.57	62.1	64.8	63.27	
		Location-2	64.1	66.5	65.3	63.2	64.3	63.72	
		Location-3	63.5	64.8	64.3	54.4	56.2	55.23	
		Location-4	65.1	66.5	65.58	54.3	55.5	54.68	
		Location-5	63.2	65.1	64.32	52.7	53.8	53.28	

						t: 75di 70di g repo M Sta Max. 25.8 51.5	B (A) B (A) orts tion-2 Averag 23.27 49.02	AAQ 6 Min. 24.1 48.5	M Stat		
		NO2	16.7		10.95 18.63	10.5 17.3				22.5	20.52
		NH3	10.7	20.5	16.05	0.8	1.2	0.92	0.7	22.5	1.33
		СО	1.2 70	1.8	90.83	0.8 70	1.2	103.00	-	125	1.55
			70	102	50.05	/0	112	103.00		125	110.07
		Sr. Pollutant No.		Ave	eighteo erage	b	Permissi limit				
		1. Sulphur Dioxide (SO ₂), μg/ m ³				nual Hours		50 80			
		 Nitrogen Dioxide (NO₂), μg/ m³ Particulate Matter (Size less than 10 μm) OR PM₁₀ μg/ m³ Particulate Matter (Size less than 2.5 				nual Hours		40 80			
					An) 24	nual Hours		60 100			
					r An 5 24	nual Hours	,	40 60			
		5.	 μm) OR PM _{2.5} μg/m³ 5. Carbon Monoxide (CO) mg/m³ 6. Ammonia (NH₃) μg/m³ 			9 8⊦	lours		02		
		6							04		
		0.				Annual 24 Hours			400		
(xxxii i)	Fly ash should be used as building material in the construction as per the provisions of Fly Ash Notification of September, 1999 and amended as on August, 2003. (The above condition is applicable only if the project site is located within the 100 Km of Thermal Power Stations).	generated from boiler is used for filling low lying area inside the premises and selling to bricks manufacturer.									
(xxxi	Ready mixed concrete must be	Ready mixed concrete is used in building construction of our								on of our	
V) (XXX	used in building construction. Storm water control and its re-	Unit-4 projects. Complied. • Adequately designed storm water drains are constructed to								ted to	
(XXX V)	use as per CGWB and BIS standards for various applications.	ensure uninterrupted flow of storm water. Its reuse in plant									

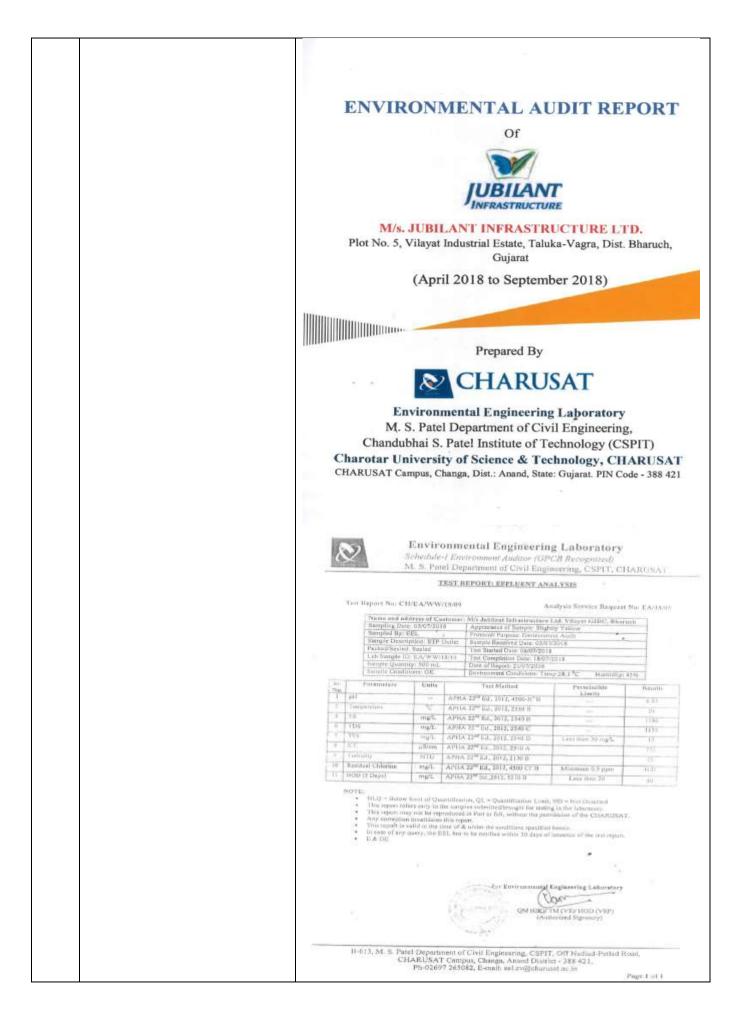
(xxx vi)	Water demand during construction should be reduced by use of pre-mixed concrete, curing agents and other best practices referred.	Best prevailing civil engineering practices are adopted for construction activities includes use of pre-mixed & ready- mixed concrete. Complied.
(xxx vii)	Permission to draw ground water shall be obtained from the competent Authority prior to construction/operation of the project.	<form><form><form></form></form></form>
(xxx viii)	Separation of grey and black water should be done by the use of dual plumbing line for separation of grey and black water.	Considering industrial establishment separation of grey and black water is not done but recycling of water has been adopted for utilization of treated sewage for horticulture and green belt development.
(xxxi x)	Fixtures for showers, toilet flushing and drinking should be of low flow either by use of aerators or pressure reducing devices or sensor based control.	Fixtures for showers, toilet flushing and drinking are of low flow inside the plant area. In offices, sensor based control are also provided. Complied.
(xl)	Use of glass may be reduced by up to 40% to reduce the electricity consumption and load on air conditioning. If necessary, use high quality double glass with special reflective coating in windows.	The construction done is mainly industrial plant. For office area use of glass is bare minimum to reduce the electricity consumption and load on air conditioning.

(yli)	Poof should most proscriptive	National Building Codes guidelines have been adopted to
(xli)	Roof should meet prescriptive requirement as per Energy Conservation Building Code by using appropriate thermal insulation material to fulfill requirement.	National Building Codes guidelines have been adopted to ensure optimum thermal loading for energy conservation.
(xlii)	Opaque wall should meet prescriptive requirement as per Energy Conservation Building Code which is proposed to be mandatory for all air conditioned spaces while it is aspiration for non-air conditioned spaces by use of appropriate thermal insulation material to fulfill requirement.	National Building Codes guidelines have been adopted to ensure optimum thermal loading for energy conservation.
(xliii)	The approval of the competent authority shall be obtained for structural safety of the buildings due to earthquake, adequacy of firefighting equipment, etc. as per National Building Code including protection measures from lightening etc.	The approval of the competent authority such as Factory Inspectorate, are obtained for structural safety of the buildings due to earthquake, adequacy of firefighting equipment, etc. Due care for structural safety is taken since design stage. National Building Codes guidelines have been adopted at all stages of construction.
(xiiv)	Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings.	There is dedicated EHS team & project team for Regular supervision of the above and other measures for monitoring should be in place all through the construction phase, so as to avoid disturbance to the surroundings.
(xlv)	Under the provisions of Environment (Protection) Act, 1986, legal action shall be initiated against the project proponent if it was found that construction of the project has been started without obtaining environmental clearance.	Construction of the project was started after obtaining environmental clearance.
II.	Operation Phase	
i)	The installation of the Sewage Treatment Plant (STP) should be certified by an independent expert and a report in this regard should be submitted to the Ministry before the project is commissioned for operation. Treated affluent emanating from STP shall be recycled/	Packaged Sewage Treatment Plant (STP) (decentralized treatment) have been installed with proven technology & treated sewage meeting with GPCB norms is used for horticulture and green belt development to the maximum extent possible. Discharge of unused treated effluent conforms to the norms and standards of the Gujarat State Pollution Control Board. Necessary measures are made to mitigate the odor problem from STP.

reused to the maximum extent possible. Treatment of 100% grey water by decentralized treatment should be done. Discharge of unused treated affluent shall conform to the norms and standards of the Gujarat State Pollution Control Board. Necessary measures should be made to mitigate the odor problem from STP. The summary of analysis report of the treated Sewage Treatment Plant (STP) for last six months by an independent expert is as below:

STP	Susp	ende mg/		BOD	(3 day mg/	/s 27 ⁰ C) L	Resi	dual C ppn	
	Min.	Max.	Average	Min.	Max.	Average	Min.	Max.	Average
STP -1	14	16	14.67	10	12	11	0.5	0.7	0.58
STP -2	11	17	14.5	9	15	12.5	0.6	0.7	0.65
STP -3	13	16	14.5	8	12	10.33	0.5	0.7	0.58

Limit: SS=20 mg/l, BOD=30 mg/l & Residual Chloride min. 0.5

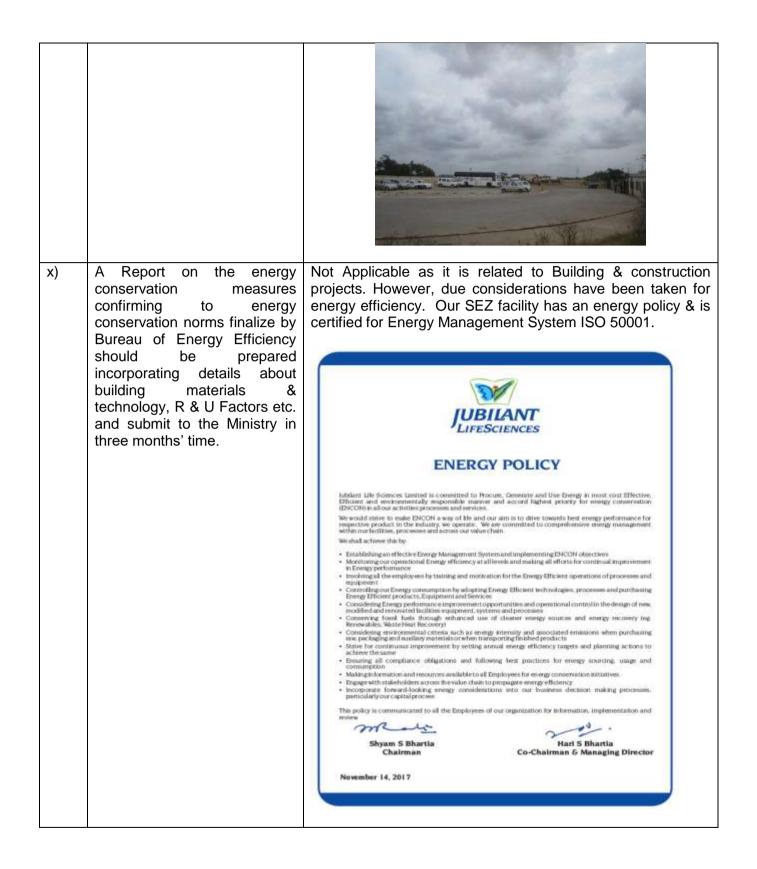

Monthly STP sample monitoring done through GPCB recognized Environmental Consultant M/s Royal Environment Auditing & Consultancy Service, Rajkot & their Laboratory is NABL certified.

Environment Auditing & Consultancy Service 393-304, 504/01-7, Bis Ban Adams, Gendel Road, RA/K07 - 300 000, The -01 281-280005 Email: respective-methodies on administrationautiency con-


States and states

Test	Report No : 125/12/2018-19			Date 25/12/2010		
Work	Work Order No : JU/141(2017-18			Job Cant No. : 3.51.0013-144025		
Name	el Company : Jubliant Infraat	tructure LHL (SEZ)	(
1	SEZ Plot No. 5.	2				
	Vilayat GIDC. T	aluka Vagra,				
	Diet Bherush-	992 012				
Atter	tion : Nr. Vrojashkumar Shah	n				
Dete	of Sample Neosipt 20/12/2018			Date & Time of Servicing	19/12/2018 at 12:30 Hrs.	
Labi	D : W/18-19/12/16			Data of Testing : 21st to 25	th December 2018	
Sere	de Type : Waste Water			Depotption of Sample Pack	ing : Plastic Carbo	
Туре	of Sempling : Oneb			Quartity of Bomple 12 LM		
Dest	ription : Treated Sovrage Water	ŝ.		Sample Collected By : Mr.R	tornesh Kalola	
	sing Mathod IE 3025 : Part 1					
Loca	ion of Sample Treat	led Sewage Water -	STP Dutlet			
51.	Perametera	Unt	Permanible Limits	STP	Test Method	
51.	Contract Contraction	and a large	as per GPCB.	Adnos	Test Method	
5r. No.	Parameters Suspended Solids	Unit mgi				
	Contract Contraction	and a large	as per GPCB.	Adnos	Test Method IS : 3025, Part- IS : 3025, Part-	
D1.	Suspended Solids	ngi	au per GPCB.	Adresi SA	IS : 3025, Part-	

ii)	The solid waste generated should be properly collected and segregated. Wet garbage should be composted and dry / inert solid waste should be disposed off to the approved sites for land filling after recovering recyclable material.	The solid waste generated is properly collected and segregated. Wet waste is dried in filter press & sludge drying beds and dry / inert solid waste is disposed off to the approved sites for land filling.						dge drying
iii)	Diesel power generating sets proposed as source of backup power for elevators and common area illumination during operation phase should be of enclosed type and conform to rules made under the Environment (Protection) Act, 1986. The height of stack of DG sets should be equal to the height needed for the combined capacity of all proposed DG sets. Use low Sulphur diesel. The location of the DG sets may be decided with in consultation with Gujarat State Pollution Control Board.	Diesel power generating sets installed as source of backup emergency power supply for elevators and common area illumination during operation phase are of enclosed type and conform to rules made under the Environment (Protection) Act, 1986. The height of stack of DG sets is as per the statutory requirement. Use low Sulphur diesel is ensured. We have taken consent of Gujarat Pollution Control Board for DG set.						
iv)	Noise should be controlled to ensure that it does not exceed the prescribed standards. During night time the noise levels measured, at the boundary of the building shall be restricted to the permissible levels to comply with the prevalent regulations.	ensure th During nig	at it do pht time ding is r revalent nitoring & record permiss	bes not of the noise restricted regulation is done n ds are ma	exceed f e levels r to the pe ons. nonthly a aintained	the pres neasured ermissibl t five loc I. The noi	cribed s d, at the e levels ations o ise level	s are
		0						
		The summ	iary of r	Day time	Iast Six		<u>s as bel</u> Night tim	
		dB	Min.	Max.	Average	Min.	Max.	Average
		Location-1	67.1	68.2	67.57	62.1	64.8	63.27
		Location-2	64.1	66.5	65.3	63.2	64.3	63.72
		Location-3	63.5	64.8	64.3	54.4	56.2	55.23
		Location-4	65.1	66.5	65.58	54.3	55.5	54.68
		Location-5	63.2	65.1	64.32	52.7	53.8	53.28
		The perm the premis Between Between 7 Complied.	ses of in 6A.M. a 10P.M, a	dustrial u and 10P.I	ınit: M.: 75dB	6 (A)	ambient	air within


V)	The green belt of the adequate width and density preferably with local species along the periphery of the plot shall be raised so as to provide protection against particulates and noise.	The green belt of the adequate width and with local species along the periphery of the as to provide protection against particulates Till date, 11094 nos. of plants on the periphe are planted giving priority to local plant spec Shirish, Neem, Gulmohar, Amaltash, Jamur Jacaranda, Peltoforum, Palash, Teak etc. Details are as below:	e plot is raised so and noise. ery & inside area sies such as h, Saptaparni,
		Greenbelt plants details	
		Plants	Qty. (No.)
		Gulmohar (Delonix Regia/ Poinciana Regia)	2380
		Bauhinia black (Orchid tree)	300
		Azardirachtaindica (Neem)	1640
		Amaltash (Cassia Fistula)	570
		Jamun	525
		Alstoniascholaris (Saptaparni)	730
		Rain Tree (Shirish)	730
		Blue Jacaranda	165
		Fern tree	75
		Peltoforum	1350
		Palash	660
		Teak	450
		Palm tree	180
		Champa (Plumeria)	150
		Saru (Casuarina)	285
		Bengali Baval (Babul)	290
		Thespasiapopulea (Paras Pipal)	180
		Fycus	50
		Polyalthia pendula (Pendula asopalv - Ashoka)	160
		Badam	100
		Coconut tree (Cocos nucifera)	50
		Borsali	24
		Conocarpus	50
		TOTAL	11094
		<image/>	

vi)	Weep holes in the compound walls shall be provided to ensure natural drainage of rain water in the catchment area during the monsoon period.	Weep holes in the compound walls are provided to ensure natural drainage of rain water in the catchment area during the monsoon period. Complied.
vii)	Rain water harvesting for roof run- off and surface run- off, as plan submitted should be implemented. Before recharging the surface run off, pre-treatment must be done to remove suspended matter, oil and grease. The borewell for rainwater recharging should be kept at least 5 mts. above the highest ground water table.	Rain water harvesting and ground water recharging is installed in non-process areas for rejuvenation of ground water. Further, rainwater harvested from the roof top of Utility building is directly used in cooling tower make up instead of recharging to ground, to prevent any industrial pollutants from recharging to ground. None of the roof top area of buildings in manufacturing plant is used for rainwater harvesting for ground water recharge, as they are likely to contain industrial pollutants settled from air emissions.
viii)	The ground water level and its quality should be monitored regularly in consultation with Central Ground Water	No ground water is used. Source of water is GIDC. Ground water quality is monitored regularly. The report of ground water analysis is as below.

				Ground	Water Qua	lity			
		Parameters	Unit			ost Monsoor	October 20	18	
				Peizowell-	Peizowell-	Peizowell-	Peizowell-	Peizowell-	Vilayat
				1	2	3	4	6	Village
		Taste		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
		Color	pt.co.	4	5	5	8	8	6
		Odor		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
		рН		8.31	7.94	8.14	7.28	7.34	7.84
		Turbidity	NTU	1	2	2	3	3	2
		Total Dissolved Solids	mg/L	615.5	598	946	2993	1905	855
		Suspended Solids	mg/L	12	10	14	13	11	10
		Conductivity	ms/cm	1515	1108.3	1654.6	577.6	3595.2	1354
		Calcium (as Ca)	mg/L	156.5	148.2	171.1	395	260	185
		Chloride (as Cl)	mg/L	235.5	117.7	187.5	1726.6	204.9	385
		Copper (as Cu)	mg/L	0.78	0.22	0.08	0.06	0.22	0.12
		Fluorides (as F)	mg/L	0.57	0.62	1.02	0.38	0.4	0.06
		Free residual chlorine	mg/L	Nil	Nil	Nil	Nil	Nil	Nil
		Iron (as Fe)	mg/L	0.077	0.051	0.022	0.098	0.065	0.055
		Mineral Oil	mg/L	Nil	Nil	Nil	Nil	Nil	Nil
		Magnesium (as Mg)	mg/L	16.8	12.1	78.4	90.8	22.1	28.7
		Manganese (as Mn)	mg/L	0.01	N.D.	0.03	0.04	N.D.	N.D.
		Nitrate (as NO3)	mg/L	25.5	15.3	17.3	65.5	17.2	18.3
		Phenolic compounds (as C6H5OH		0.02	N.D.	0.03	0.04	N.D.	N.D.
		Sulphate (as SO4)	mg/L	22	15	164	180	212	24
		Total alkalinity (as CaCO3)	mg/L	260	420	450	400	400	380
		Total hardness (as CaCO3)	mg/L	460	420	750	1360	740	580
		Sodium (as Na)	mg/L	321.4	276.5	141.4	560.3	348.6	365
		Potassium (as K)	mg/L	3.5	3.5	3.6	4.6	4.1	2.8
		Lead (as Pb)	mg/L	0.07	0.04	0.03	0.61	0.06	0.05
		Cadmium	mg/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
		Chromium	mg/L	0.04	0.041	0.044	0.505	0.049	0.032
		Zinc (as Zn)	mg/L	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
		Dissolve Oxygen	mg/L	5.1	58	5.5	5.3	5.5	6.1
		Biochemical Oxygen Demand	mg/L	6.5	NIL	3.5	3	3.5	NIL
		Chemical Oxygen Demand	mg/L	22	NIL	10	10	15	NIL
		Total Coliforms	Counts /100ml	Absent	Absent	Absent	Absent	Absent	Absent
		Fecal Coliforms	Counts /100ml	Absent	Absent	Absent	Absent	Absent	Absent
ix)	Traffic congestion near the	Jubilant SEZ is in	wel	nlann	ed GI	C Ind	ustrial	Area	Traffic
1/1/	entry and exit points from the								
		congestion near							
	roads adjoining the proposed	adjoining the prop							is fully
	project site must be avoided.	internalized and n	o pul	olic spa	ace sh	ould be	e utilize	ed.	
	Parking should be fully								
	internalized and no public			Park	ing are	ea			
	space should be utilized.								
	space should be utilized.								
							2		
		1							
		~!'				-	-	30	
			-	and the second second	-	the second	Look in		
					SALE !	NAMES OF BELLEVILLE	and de	week a	
				Fire aller	and the state of the				
		Like Barris				Ser.			
								1	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S	273-1-1	and the second			

		<image/> <image/> <image/> <image/> <image/> <image/> <section-header><image/><section-header><image/><section-header></section-header></section-header></section-header>
xi)	Energy conservation measures like installation of CFLs/TFLs for the lighting the areas outside the building should be integral part of the project design and should be in place before project commissioning. Use CFLs and TFLs should be properly collected and disposed off/sent for recycling as per the prevailing guidelines/ rules of the regulatory authority to avoid mercury contamination. Use of solar panels may be done to the extent possible.	 Energy conservation measures like installation of CFLs/TFLs for the lighting the areas outside the building is initiated. Approx. 150 nos. of street lights & 750 lights of other plants area are changed from MH lamp to LED. LED lights are given preference for new buildings making it an integral part of the project design and should be in place before project commissioning. Used CFLs, TFLs and other bulbs are properly collected and stored/disposed off/sent for recycling as per the prevailing guidelines/ rules of the regulatory authority to avoid mercury contamination. Installed solar lighting of 10 KW capacity in non-process area and further 50 KW capacity installation scheme is ready & under approval.
xii)	Adequate measures should be taken to prevent odor problem from solid waste processing plant and STP.	Solid wastes are not processed in the facility and disposed off to TSDF. Odors causing solid wastes are stored in drums and voluminous inorganic wastes in loose form are stored in dedicated sheds at an isolated location to prevent odor related issues and disposed off to TSDF. Organic wastes & odorous vent gases are disposed off through incineration and hence odor issues are largely reduced.

		Package sewage treatment plants are installed at source of
		sewage generation and hence Odor issue is eliminated. Incinerator is run efficiently to prevent odor problem.
		Drum storage shed:
		Packaged STP
xiii)	The building should have adequate distance between them to allow movement of fresh air and passage of natural	Care is taken since design stage to keep adequate distance between buildings to allow movement of fresh air and passage of natural light, air and ventilation. Complied.
PAR	light, air and ventilation. GENERAL CONDITIONS	
Т-В		
i)	The environmental safeguards contained in the EIA/EMP Report should be implemented in letter and spirit. All the recommendations made in respect of environmental	Environmental safeguards contained in EIA-EMP are implemented. Scrubbers, ESP, bag filters, incinerator, ETP, STP, stack of adequate height, rain water harvesting are installed.

	management and risk mitigation measures relating to the project shall be implemented	All the recommendations made in respect of environmental management and risk mitigation measures relating to the project are implemented.
ii)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as	We are submitting six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. With this report, we will send the same through e mail also.
	well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.	Last compliance report was submitted on 24.07.2018. Complied.
4.	Officials from the Regional Office of MOEF, Bhopal who would be monitoring the implementation of environmental safeguards should be given full cooperation, facilities and documents/data by the project proponents during their inspection. A complete set of all the documents submitted to MoEF should be forwarded to the CCF, Regional office of MOEF, Bhopal,	Officials from the Regional Office of MOEF, Bhopal who would be monitoring the implementation of environmental safeguards will be given full cooperation, facilities and documents/data by the project proponents during their inspection. Documents submitted to MoEF are already forwarded to Regional office of MOEF, Bhopal. Complied.
5.	In the case of any change(s) in the scope of the project, the project would require a fresh appraisal by this Ministry.	Project is in operation phase. In the case of any change(s) in the scope of the project, we will approach for a fresh appraisal by this Ministry.
6.	The Ministry reserves the right to add additional safeguard measures subsequently, if found necessary, and to take action including revoking of the environment clearance under the provisions of the Environmental (Protection) Act, 1986, to ensure effective implementation of the suggested safeguard measures in a time bound and satisfactory manner.	Noted
7.	All other statutory clearances such as the approvals for storage of diesel from Chief Controller of Explosives, Fire Department, Civil Aviation Department, Forest Conservation Act, 1980 and	The diesel stored for DG sets are below the threshold quantity for seeking approval from CCOE and hence not applicable. Due to small quantity of usage, no underground storage constructed.

Wildlife (Protection) Act, 1972 etc. shall be obtained, as applicable by project proponents from the respective competent authorities.	
The project authorities shall strictly comply with the rules and guidelines under manufacture, Storage and Import of Hazardous Chemicals Rules, 1989 as amended in October 1994 and January, 2000 and hazardous Waste (Management and Handling) Rules, 1989 as amended from time to time. Authorization from the SPCB shall be obtained for collection, treatment, storage and disposal of wastes. All Transportation of Hazardous Chemicals shall be as per the MVA, 1989.	<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>

	These stipulations would be enforced among others under the provisions of Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and control of Pollution) act 1981, the Environment (Protection) Act, 1986, the Public Liability (Insurance) Act, 1991 and EIA Notification, 2006.	
10.	The project proponent should advertise in at least two local Newspapers widely circulated in the region, one of which shall be in the vernacular language informing that the project has been accorded Environmental Clearance and copies of clearance letters are available with the Kerala Pollution Control Board and may also be seen on the website of the Ministry of Environment and Forests at http://www.envfor.nic.in. The advertisement should be made within 10 days from the date of receipt of the Clearance letter and a copy of the same should be forwarded to the Regional office of this Ministry at Bangalore.	Complied. The advertisement for the Environmental Clearance issued was published in The Times of India and Gujarat Samachar dated 25.11.2011. A copy of Environmental Clearance was also submitted to GPCB. Copies of advertisement are already submitted.
11.	Environmental clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa	Not applicable, as this condition is for other matter.

	Foundation V/s Union of India in Writ Petition (Civil) No.460 of 2004 as may be applicable to this project.	
12.	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zilla Parisad/Municipal Corporation, Urban Local Body and the Local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the company by the proponent.	Complied.
13.	The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM, SO, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	We upload the status of compliance of the stipulated EC conditions, including results of monitored data on our website and update the same periodically. It is simultaneously sent to the Regional Office of MoEF, the respective Zonal Office of CPCB at Baroda and the SPCB. The criteria pollutant levels namely; SPM, RSPM, SO, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project are monitored and displayed at a convenient location near the main gate of the company in the public domain. Complied.
14.	The environmental statement for each financial year ending 31st March in Form V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.	The environmental statement for each financial year ending 31st March in Form V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, Form V is submitted to SPCB & put up on web site of the company. The status of compliance of EC conditions is also put on the website of the company. Along with Form V, it will also be sent to the respective Regional Offices of MoEF by e-mail.

Compliance Report

For the EC amendment received vide letter No. 21-1087/2007-IA.III (Pt) dt.31.03.2017

As on 29.01.2019

Sr. No.	Stipulation requirement	Compliance status
1	This has reference to your letter No. JIL/EHS/EC/2016/0306 dated 14 th March, 2016, submitting the proposal to this Ministry for amendment in the Environmental Clearance dated 3 rd November, 2011 granted to the above mentioned project in favor of M/s Jubilant Infrastructure Limited, in terms of the provisions of the Environment Impact Assessment (EIA) Notification, 2006 under the Environment (Protection) Act, 1986.	Noted.
2	The proposal 'SEZ for chemicals' at Vilayat GIDC in Taluka Vagra, District Bharuch (Gujarat) was earlier accorded Environmental Clearance by the Ministry of Environment and Forest (MoEF) vide letter No.21-1087/2007-IA-III dated 3 rd July, 2008 and subsequently amended on dated 3 rd November, 2011.	Noted.
3	The proposal for amendment in the Environmental Clearance was considered by the Expert Appraisal Committee (EAC) in the Ministry for Infrastructure Development, Coastal Regulation Zone, Building/Construction and Miscellaneous projects, in its 158 th meeting held on 27-28 April, 2016. The details of the proposal, as per the documents submitted by the project proponent and also as informed during the above said EAC meeting, are reported to be as under:-	Noted.
(i)	The project was earlier granted Environmental Clearance vide the Ministry's letter dated 3 rd July, 2008 amended on 3 rd November, 2011, for setting up SEZ for export manufacturing products namely, fine chemicals, specially chemicals, bulk organic chemicals, packing units etc. covered under item 5(f) 'Synthetic Organic Chemicals' of the schedule to the EIA Notification, 2006.	Noted.
(ii)	Due to chemical manufacturing units not upcoming in the desired numbers, the project proponent now proposes manufacturing of Technical Grade Pesticide and Pesticide Specific Intermediates, covered under item 5(b), also in their SEZ to make it multi sectoral chemical SEZ. Due to proposed change in the product mix, the project proponent have requested for amendment in the Environmental Clearance dated 3 rd November, 2011 accordingly.	Noted.
4	The EAC, after deliberation in its 158 th meeting held on 27-28 April, 2016, recommended the proposal for amendment in the Environmental Clearance. Based on the recommendations of the EAC, the Ministry of Environment, Forest and Climate Change hereby conveys amendment in the Environmental Clearance dated 3 rd July, 2008, amended on dated 3 rd November, 2011, in respect of change in product mix, under the provisions of the EIA Notification, 2006 and amendments thereto and circulars issued thereon.	Noted.
5	All other conditions stipulated in the Environmental Clearance vide letter No.21-1087/2007-IA-III dated 3 rd November, 2011, shall remain unchanged.	Noted & being complied.